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PREFACE

If calculus is the heart of modern science, then differential equations are its guts.
All physical laws, from the motion of a vibrating string to the orbits of the plan-
ets to Einstein’s field equations, are expressed in terms of differential equations.
Classically, ordinary differential equations described one-dimensional phenom-
ena and partial differential equations described higher-dimensional phenomena.
But, with the modern advent of dynamical systems theory, ordinary differential
equations are now playing a role in the scientific analysis of phenomena in all
dimensions.

Virtually every sophomore science student will take a course in introductory
ordinary differential equations. Such a course is often fleshed out with a brief
look at the Laplace transform, Fourier series, and boundary value problems for
the Laplacian. Thus the student gets to see a little advanced material, and some
higher-dimensional ideas, as well.

As indicated in the first paragraph, differential equations is a lovely venue
for mathematical modeling and the applications of mathematical thinking. Truly
meaningful and profound ideas from physics, engineering, aeronautics, statics,
mechanics, and other parts of physical science are beautifully illustrated with
differential equations.

We propose to write a text on ordinary differential equations that will be mean-
ingful, accessible, and engaging for a student with a basic grounding in calculus
(for example, the student who has studied Calculus Demystified by this author
will be more than ready for Differential Equations Demystified). There will be
many applications, many graphics, a plethora of worked examples, and hun-
dreds of stimulating exercises. The student who completes this book will be

ix
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ready to go on to advanced analytical work in applied mathematics, engineer-
ing, and other fields of mathematical science. It will be a powerful and useful
learning tool.

Steven G. Krantz



1
CHAPTER

What Is a
Differential

Equation?

1.1 Introductory Remarks
A differential equation is an equation relating some function f to one or more of
its derivatives. An example is

d2f

dx2
+ 2x

df

dx
+ f 2(x) = sin x. (1)

Observe that this particular equation involves a function f together with its first
and second derivatives. The objective in solving an equation like (1) is to find the

1
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CHAPTER 1 Differential Equations2

function f . Thus we already perceive a fundamental new paradigm: When we
solve an algebraic equation, we seek a number or perhaps a collection of numbers;
but when we solve a differential equation we seek one or more functions.

Many of the laws of nature—in physics, in engineering, in chemistry, in biology,
and in astronomy—find their most natural expression in the language of differential
equations. Put in other words, differential equations are the language of nature.
Applications of differential equations also abound in mathematics itself, especially
in geometry and harmonic analysis and modeling. Differential equations occur in
economics and systems science and other fields of mathematical science.

It is not difficult to perceive why differential equations arise so readily in the
sciences. If y = f (x) is a given function, then the derivative df/dx can be inter-
preted as the rate of change of f with respect to x. In any process of nature, the
variables involved are related to their rates of change by the basic scientific princi-
ples that govern the process—that is, by the laws of nature. When this relationship
is expressed in mathematical notation, the result is usually a differential equation.

Certainly Newton’s Law of Universal Gravitation, Maxwell’s field equations, the
motions of the planets, and the refraction of light are important physical examples
which can be expressed using differential equations. Much of our understanding
of nature comes from our ability to solve differential equations. The purpose of this
book is to introduce you to some of these techniques.

The following example will illustrate some of these ideas. According to Newton’s
second law of motion, the acceleration a of a body of mass m is proportional to
the total force F acting on the body. The standard implementation of this relation-
ship is

F = m · a. (2)

Suppose in particular that we are analyzing a falling body of mass m. Express
the height of the body from the surface of the Earth as y(t) feet at time t . The
only force acting on the body is that due to gravity. If g is the acceleration due
to gravity (about −32 ft/sec2 near the surface of the Earth) then the force exerted
on the body is m · g. And of course the acceleration is d2y/dt2. Thus Newton’s
law (2) becomes

m · g = m · d2y

dt2
(3)

or

g = d2y

dt2
.

We may make the problem a little more interesting by supposing that air exerts
a resisting force proportional to the velocity. If the constant of proportionality is k,
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then the total force acting on the body is mg − k · (dy/dt). Then the equation (3)

becomes

m · g − k · dy

dt
= m · d2y

dt2
. (4)

Equations (3) and (4) express the essential attributes of this physical system.
A few additional examples of differential equations are these:

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ p(p + 1)y = 0; (5)

x2 d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0; (6)

d2y

dx2
+ xy = 0; (7)

(1 − x2)y′′ − xy′ + p2y = 0; (8)

y′′ − 2xy′ + 2py = 0; (9)

dy

dx
= k · y. (10)

Equations (5)–(9) are called Legendre’s equation, Bessel’s equation, Airy’s
equation, Chebyshev’s equation, and Hermite’s equation respectively. Each has
a vast literature and a history reaching back hundreds of years. We shall touch
on each of these equations later in the book. Equation (10) is the equation of
exponential decay (or of biological growth).

Math Note: A great many of the laws of nature are expressed as second-
order differential equations. This fact is closely linked to Newton’s second law,
which expresses force as mass time acceleration (and acceleration is a second
derivative). But some physical laws are given by higher-order equations. The
Euler–Bernoulli beam equation is fourth-order.

Each of equations (5)–(9) is of second-order, meaning that the highest deriva-
tive that appears is the second. Equation (10) is of first-order, meaning that the
highest derivative that appears is the first. Each equation is an ordinary differen-
tial equation, meaning that it involves a function of a single variable and the
ordinary derivatives (not partial derivatives) of that function.
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1.2 The Nature of Solutions
An ordinary differential equation of order n is an equation involving an unknown
function f together with its derivatives

df

dx
,

d2f

dx2
, . . . ,

dnf

dxn
.

We might, in a more formal manner, express such an equation as

F

(
x, y,

df

dx
,
d2f

dx2
, . . . ,

dnf

dxn

)
= 0.

How do we verify that a given functionf is actually the solution of such an equation?
The answer to this question is best understood in the context of concrete

examples.

e.g. EXAMPLE 1.1
Consider the differential equation

y′′ − 5y′ + 6y = 0.

Without saying how the solutions are actually found, we can at least check that
y1(x) = e2x and y2(x) = e3x are both solutions.

To verify this assertion, we note that

y′′
1 − 5y′

1 + 6y1 = 2 · 2 · e2x − 5 · 2 · e2x + 6 · e2x

= [4 − 10 + 6] · e2x

≡ 0

and

y′′
2 − 5y′

2 + 6y2 = 3 · 3 · e3x − 5 · 3 · e3x + 6 · e3x

= [9 − 15 + 6] · e3x

≡ 0.

This process, of verifying that a function is a solution of the given differential
equation, is most likely entirely new for you. You will want to practice and become
accustomed to it. In the last example, you may check that any function of the form

y(x) = c1e
2x + c2e

3x (1)

(where c1, c2 are arbitrary constants) is also a solution of the differential equation.
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Math Note: This last observation is an instance of the principle of superposition
in physics. Mathematicians refer to the algebraic operation in equation (1) as
“taking a linear combination of solutions” while physicists think of the process
as superimposing forces.

An important obverse consideration is this: When you are going through the
procedure to solve a differential equation, how do you know when you are finished?
The answer is that the solution process is complete when all derivatives have
been eliminated from the equation. For then you will have y expressed in terms of
x (at least implicitly). Thus you will have found the sought-after function.

For a large class of equations that we shall study in detail in the present book, we
will find a number of “independent” solutions equal to the order of the differential
equation. Then we will be able to form a so-called “general solution” by combining
them as in (1). Of course we shall provide all the details of this process in the
development below.

You Try It: Verify that each of the functions y1(x) = ex y2(x) = e2x and
y3(x) = e−4x is a solution of the differential equation

d3y

dx3
+ d2y

dx2
− 10

dy

dx
+ 8y = 0.

More generally, check that y(x) = c1e
x + c2e

2x + c3e
−4x (where c1, c2, c3 are

arbitrary constants) is a “general solution” of the differential equation.

Sometimes the solution of a differential equation will be expressed as an
implicitly defined function. An example is the equation

dy

dx
= y2

1 − xy
, (2)

which has solution

xy = ln y + c. (3)

Equation (3) represents a solution because all derivatives have been eliminated.
Example 1.2 below contains the details of the verification that (3) is the solution

of (2).

Math Note: It takes some practice to get used to the idea that an implicitly defined
function is still a function. A classic and familiar example is the equation

x2 + y2 = 1. (4)
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y

x

Fig. 1.1.

This relation expresses y as a function of x at most points. Refer to Fig. 1.1.
In fact the equation (4) entails

y = +
√

1 − x2

when y is positive and

y = −
√

1 − x2

when y is negative. It is only at the exceptional points (−1, 0) and (−1, 0),
where the tangent lines are vertical, that y cannot be expressed as a function
of x.

Note here that the hallmark of what we call a solution is that it has no derivatives
in it: it is a straightforward formula, relating y (the dependent variable) to x (the
independent variable).

e.g. EXAMPLE 1.2
To verify that (3) is indeed a solution of (2), let us differentiate:

d

dx
[xy] = d

dx
[ln y + c],

hence

1 · y + x · dy

dx
= dy/dx

y
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or

dy

dx

[
1

y
− x

]
= y.

In conclusion,

dy

dx
= y2

1 − xy
,

as desired.

One unifying feature of the two examples that we have now seen of verifying
solutions is this: When we solve an equation of order n, we expect n “independent
solutions” (we shall have to say later just what this word “independent” means)
and we expect n undetermined constants. In the first example, the equation was
of order 2 and the undetermined constants were c1 and c2. In the second example,
the equation was of order 1 and the undetermined constant was c.

You Try It: Verify that the equation x sin y = cos y gives an implicit solution
to the differential equation

dy

dx
[x cot y + 1] = −1.

1.3 Separable Equations
In this section we shall encounter our first general class of equations with the
property that

(i) We can immediately recognize members of this class of equations.
(ii) We have a simple and direct method for (in principle)1 solving such

equations.

This is the class of separable equations.

DEFINITION 1.1
An ordinary differential equation is separable if it is possible, by elementary
algebraic manipulation, to arrange the equation so that all the dependent vari-
ables (usually the y variable) are on one side and all the independent variables

1We throw in this caveat because it can happen, and frequently does happen, that we can write down integrals
that represent solutions of our differential equation, but we are unable to evaluate those integrals. This is annoying,
but we shall later—in Chapter 7—learn numerical techniques that will address such an impasse.
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(usually the x variable) are on the other side. The corresponding solution tech-
nique is called separation of variables.

Let us learn the method by way of some examples.

e.g. EXAMPLE 1.3
Solve the ordinary differential equation

y′ = 2xy.

SOLUTION
In the method of separation of variables—which is a method for first-order
equations only—it is useful to write the derivative using Leibniz notation.
Thus we have

dy

dx
= 2xy.

We rearrange this equation as

dy

y
= 2x dx.

[It should be noted here that we use the shorthand dy to stand for
dy

dx
dx.]

Now we can integrate both sides of the last displayed equation to obtain∫
dy

y
=
∫

2x dx.

We are fortunate in that both integrals are easily evaluated. We obtain

ln y = x2 + c.

[It is important here that we include the constant of integration. We combine the
constant from the left-hand integral and the constant from the right-hand integral
into a single constant c.] Thus

y = ex2+c.

We may abbreviate ec by D and rewrite this last equation as

y = Dex2
. (1)



CHAPTER 1 Differential Equations 9

Notice two important features of our final representation for the solution:

(i) We have re-expressed the constant ec as the positive constant D.
(ii) Our solution contains one free constant, as we may have anticipated since

the differential equation is of order 1.

We invite you to verify that the solution in equation (1) actually satisfies the
original differential equation.

e.g.EXAMPLE 1.4
Solve the differential equation

xy′ = (1 − 2x2) tan y.

SOLUTION
We first write the equation in Leibniz notation. Thus

x · dy

dx
= (1 − 2x2) tan y.

Separating variables, we find that

cot y dy =
[

1

x
− 2x

]
dx.

Applying the integral to both sides gives∫
cot y dy =

∫ [
1

x
− 2x

]
dx

or

ln sin y = ln x − x2 + C.

Again note that we were careful to include a constant of integration.
We may express our solution as

sin y = eln x−x2+C

or

sin y = D · x · e−x2
.

The result may be written as

y = sin−1
[
D · x · e−x2

]
.

We invite you to verify that this is indeed a solution to the given differential
equation.
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Math Note: It should be stressed that not all ordinary differential equations are
separable. As an instance, the equation

x2y + y2x = sin(xy)

cannot be separated so that all the x’s are on one side of the equation and all the
y’s on the other side.

☞ You Try It: Use the method of separation of variables to solve the differential
equation

x3y′ = y.

1.4 First-Order Linear Equations
Another class of differential equations that is easily recognized and readily solved
(at least in principle) is that of first-order linear equations.

DEFINITION 1.2
An equation is said to be first-order linear if it has the form

y′ + a(x)y = b(x). (1)

The “first-order” aspect is obvious: only first derivatives appear in the equa-
tion. The “linear” aspect depends on the fact that the left-hand side involves a
differential operator that acts linearly on the space of differentiable functions.
Roughly speaking, a differential equation is linear if y and its derivatives are not
multiplied together, not raised to powers, and do not occur as the arguments
of functions. This is an advanced idea that we shall explicate in detail later. For
now, you should simply accept that an equation of the form (1) is first-order
linear, and that we will soon have a recipe for solving it.

As usual, we explicate the method by proceeding directly to the examples.

e.g. EXAMPLE 1.5
Consider the differential equation

y′ + 2xy = x.

Find a complete solution.
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SOLUTION
This equation is plainly not separable (try it and convince yourself that this is
so). Instead we endeavor to multiply both sides of the equation by some function
that will make each side readily integrable. It turns out that there is a trick that
always works: You multiply both sides by e

∫
a(x) dx .

Like many tricks, this one may seem unmotivated. But let us try it out and
see how it works in practice. Now∫

a(x) dx =
∫

2x dx = x2.

[At this point we could include a constant of integration, but it is not necessary.]
Thus e

∫
a(x) dx = ex2

. Multiplying both sides of our equation by this factor gives

ex2 · y′ + ex2 · 2xy = ex2 · x

or [
ex2 · y

]′
= x · ex2

.

It is the last step that is a bit tricky. For a first-order linear equation, it is
guaranteed that if we multiply through by e

∫
a(x) dx then the left-hand side of

the equation will end up being the derivative of [e
∫

a(x) dx · y]. Now of course
we integrate both sides of the equation:∫ [

ex2 · y

]′
dx =

∫
x · ex2

dx.

We can perform both the integrations: on the left-hand side we simply apply the
fundamental theorem of calculus; on the right-hand side we do the integration.
The result is

ex2 · y = 1

2
· ex2 + C

or

y = 1

2
+ Ce−x2

.

Observe that, as we usually expect, the solution has one free constant (because
the original differential equation was of order 1). We invite you to check that
this solution actually satisfies the differential equation.
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Math Note: Of course not all ordinary differential equations are first order linear.
The equation

[y′]2 − y = sin x

is indeed first order—because the highest derivative that appears is the first
derivative. But it is nonlinear because the function y′ is multiplied by itself.
The equation

y′′ · y − y′ = ex

is second order and is also nonlinear—because y′′ is multiplied times y.

Summary of the method of first-order
linear equations

To solve a first-order linear equation

y′ + a(x)y = b(x),

multiply both sides of the equation by the “integrating factor” e
∫

a(x) dx and then
integrate.

e.g. EXAMPLE 1.6
Solve the differential equation

x2y′ + xy = x2 · sin x.

SOLUTION
First observe that this equation is not in the standard form (equation (1)) for
first-order linear. We render it so by multiplying through by a factor of 1/x2.
Thus the equation becomes

y′ + 1

x
y = sin x.

Now a(x) = 1/x,
∫

a(x) dx = ln |x|, and e
∫

a(x) dx = |x|. We multiply the
differential equation through by this factor. In fact, in order to simplify the
calculus, we shall restrict attention to x > 0. Thus we may eliminate the absolute
value signs.

Thus

xy′ + y = x · sin x.
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Now, as is guaranteed by the theory, we may rewrite this equation as[
x · y

]′ = x · sin x.

Applying the integral to both sides gives∫ [
x · y

]′
dx =

∫
x · sin x dx.

As usual, we may use the fundamental theorem of calculus on the left, and
we may apply integration by parts on the right. The result is

x · y = −x · cos x + sin x + C.

We finally find that our solution is

y = − cos x + sin x

x
+ C

x
.

You should plug this answer into the differential equation and check that it works.

You Try It: Use the method of first-order linear equations to find the complete
solution of the differential equation

y′ + 1

x
y = ex.

1.5 Exact Equations
A great many first-order equations may be written in the form

M(x, y) dx + N(x, y) dy = 0. (1)

This particular format is quite suggestive, for it brings to mind a family of curves.
Namely, if it happens that there is a function f (x, y) so that

∂f

∂x
= M and

∂f

∂y
= N, (2)

then we can rewrite the differential equation as

∂f

∂x
dx + ∂f

∂y
dy = 0. (3)
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Of course the only way that such an equation can hold is if

∂f

∂x
≡ 0 and

∂f

∂y
≡ 0.

And this entails that the function f be identically constant. In other words,

f (x, y) ≡ c.

This last equation describes a family of curves: for each fixed value of c, the
equation expresses y implicitly as a function of x, and hence gives a curve. In later
parts of this book we shall learn much from thinking of the set of solutions of a
differential equation as a smoothly varying family of curves in the plane.

The method of solution just outlined is called the method of exact equations.
It depends critically on being able to tell when an equation of the form (1) can be
written in the form (3). This in turn begs the question of when (2) will hold.

Fortunately, we learned in calculus a complete answer to this question. Let us
review the key points. First note that, if it is the case that

∂f

∂x
= M and

∂f

∂y
= N, (4)

then we see (by differentiation) that

∂2f

∂y∂x
= ∂M

∂y
and

∂2f

∂x∂y
= ∂N

∂x
.

Since mixed partials of a smooth function may be taken in any order, we find that
a necessary condition for the condition (4) to hold is that

∂M

∂y
= ∂N

∂x
. (5)

We call (5) the exactness condition. This provides us with a useful test for when
the method of exact equations will apply.

It turns out that condition (5) is also sufficient—at least on a domain with no
holes. We refer you to any good calculus book (see, for instance, [STE]) for the
details of this assertion. We will use our worked examples to illustrate the point.

e.g. EXAMPLE 1.7
Use the method of exact equations to solve

x

2
· cot y · dy

dx
= −1.
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SOLUTION
First, we rearrange the equation as

2x sin y dx + x2 cos y dy = 0.

Observe that the role of M(x, y) is played by 2x sin y and the role of N(x, y)

is played by x2 cos y. Next we see that

∂M

∂y
= 2x cos y = ∂N

∂x
.

Thus our necessary condition for the method of exact equations to work is
satisfied. We shall soon see that it is also sufficient.

We seek a function f such that ∂f/∂x = M(x, y) = 2x sin y and ∂f/∂y =
N(x, y) = x2 cos y. Let us begin by concentrating on the first of these
conditions:

∂f

∂x
= 2x sin y,

hence ∫
∂f

∂x
dx =

∫
2x sin y dx.

The left-hand side of this equation may be evaluated with the fundamental
theorem of calculus. Treating x and y as independent variables (which is part of
this method), we can also compute the integral on the right. The result is

f (x, y) = x2 sin y + φ(y). (6)

Now there is an important point that must be stressed. You should by now
have expected a constant of integration to show up. But in fact our “constant
of integration” is φ(y). This is because our integral was with respect to x,
and therefore our constant of integration should be the most general possible
expression that does not depend on x. That, of course, would be a function of y.

Now we differentiate both sides of (6) with respect to y to obtain

N(x, y) = ∂f

∂y
= x2 cos y + φ′(y).

But of course we already know that N(x, y) = x2 cos y. The upshot is that

φ′(y) = 0

or

φ(y) = d,

an ordinary constant.
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Plugging this information into equation (6) now yields that

f (x, y) = x2 sin y + d.

We stress that this is not the solution of the differential equation. Before
you proceed, please review the outline of the method of exact equations that
preceded this example. Our job now is to set

f (x, y) = c.

So

x2 · sin y = c̃, (7)

where c̃ = c − d .
Equation (7) is in fact the solution of our differential equation, expressed

implicitly. If we wish, we can solve for y in terms of x to obtain

y = sin−1 c̃

x2
.

And you may check that this is the solution of the given differential equation.

e.g. EXAMPLE 1.8
Use the method of exact equations to solve the differential equation

y2 dx − x2 dy = 0.

SOLUTION
We first test the exactness condition:

∂M

∂y
= 2y �= −2x = ∂N

∂x
.

The exactness condition fails. As a result, this ordinary differential equation
cannot be solved by the method of exact equations.

Notice that we are not saying here that the given differential equation cannot
be solved. In fact it can be solved by the method of separation of variables (try
it!). Rather, it cannot be solved by the method of exact equations.
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Math Note: It is an interesting fact that the concept of exactness is closely
linked to the geometry of the domain of the functions being studied. An important
example is

M(x, y) = −y

x2 + y2
, N(x, y) = x

x2 + y2
.

We take the domain of M and N to be U = {(x,y) : 1 < x2 + y2 < 2} in order to
avoid the singularity at the origin. Of course this domain has a hole.

Then you may check that ∂M/∂y = ∂N/∂x on U . But it can be shown that
there is no function f (x,y) such that ∂f/∂x = M and ∂f/∂y = N . Again, the hole
in the domain is the enemy.

Without advanced techniques at our disposal, it is best when using the method
of exact equations to work only on domains that have no holes.

Math Note: It is a fact that, even when a differential equation fails the “exact
equations test,” it is always possible to multiply the equation through by an
“integrating factor” so that it will pass the exact equations test. As an example,
the differential equation

2xy sin x dx + x2 sin x dy = 0

is not exact. But multiply through by the integrating factor 1/sin x and the new
equation

2xy dx + x2 dy = 0

is exact.
Unfortunately, it can be quite difficult to discover explicitly what that integrating

factor might be. We will learn more about the method of integrating factors in
Section 1.8.

e.g.EXAMPLE 1.9
Use the method of exact equations to solve

ey dx + (xey + 2y) dy = 0.

SOLUTION
First we check for exactness:

∂M

∂y
= ∂

∂y
[ey] = ey = ∂

∂x
[xey + 2y] = ∂M

∂x
.

Thus the equation passes the test and the method of exact equations is at least
feasible.



CHAPTER 1 Differential Equations18

Now we can proceed to solve for f :

∂f

∂x
= M = ey,

hence

f (x, y) = x · ey + φ(y).

But then

∂

∂y
f (x, y) = ∂

∂y

[
x · ey + φ(y)

] = x · ey + φ′(y).

And this last expression must equal N(x, y) = xey + 2y. It follows that

φ′(y) = 2y

or

φ(y) = y2 + d.

Altogether, then, we conclude that

f (x, y) = x · ey + y2 + d.

We must not forget the final step. The solution of the differential equation is

f (x, y) = c

or

x · ey + y2 + d = c

or

x · ey + y2 = c̃.

This time we must content ourselves with the solution expressed implicitly,
since it is not feasible to solve for y in terms of x.

☞ You Try It: Use the method of exact equations to solve the differential equation

3x2y dx + x3 dy = 0.
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1.6 Orthogonal Trajectories and
Families of Curves

We have already noted that it is useful to think of the collection of solutions of a
first-order differential equations as a family of curves. Refer, for instance, to the
last example of the preceding section. We solved the differential equation

ey dx + (xey + 2y) dy = 0

and found the solution set

x · ey + y2 = c. (1)

For each value of c, the equation describes a curve in the plane.
Conversely, if we are given a family of curves in the plane then we can pro-

duce a differential equation from which the curves come. Consider the example of
the family

x2 + y2 = 2cx. (2)

You can readily see that this is the family of all circles tangent to the y-axis at the
origin (Fig. 1.2).

We may differentiate the equation with respect to x, thinking of y as a function
of x, to obtain

2x + 2y · dy

dx
= 2c.

Fig. 1.2.
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Now the original equation (2) tells us that

x + y2

x
= 2c,

and we may equate the two expressions for the quantity 2c (the point being to
eliminate the constant c). The result is

2x + 2y · dy

dx
= x + y2

x

or

dy

dx
= y2 − x2

2xy
. (3)

In summary, we see that we can pass back and forth between a differential
equation and its family of solution curves.

There is considerable interest, given a family F of curves, to find the corre-
sponding family G of curves that are orthogonal (or perpendicular) to those of F .
For instance, if F represents the flow curves of an electric current, then G will be
the equipotential curves for the flow. If we bear in mind that orthogonality of curves
means orthogonality of their tangents, and that orthogonality of the tangent lines
means simply that their slopes are negative reciprocals, then it becomes clear what
we must do.

e.g. EXAMPLE 1.10
Find the orthogonal trajectories to the family of curves

x2 + y2 = c.

SOLUTION
First observe that we can differentiate the given equation to obtain

2x + 2y · dy

dx
= 0.

The constant c has disappeared, and we can take this to be the differential equa-
tion for the given family of curves (which in fact are all the circles centered at
the origin—see Fig. 1.3).

We rewrite the differential equation as

dy

dx
= −x

y
.
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Fig. 1.3.

Now taking negative reciprocals, as indicated in the discussion right before this
example, we obtain the new differential equation

dy

dx
= y

x
.

We may easily separate variables to obtain

1

y
dy = 1

x
dx.

Applying the integral to both sides yields∫
1

y
dy =

∫
1

x
dx

or

ln |y| = ln |x| + C.

With some algebra, this simplifies to

|y| = D|x|
or

y = ±Dx.

The solution that we have found comes as no surprise: the orthogonal trajec-
tories to the family of circles centered at the origin is the family of lines through
the origin. See Fig. 1.4.
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Fig. 1.4.

Math Note: It is not the case that an “arbitrary” family of curves will have well-
defined orthogonal trajectories. Consider, for example, the curves y = |x| + c

and think about why the orthogonal trajectories for these curves might lead to
confusion.

☞ You Try It: Find the orthogonal trajectories to the curves y = x2 + c.

1.7 Homogeneous Equations
You should be cautioned that the word “homogeneous” has two meanings in this
subject (as mathematics is developed simultaneously by many people all over the
world, and they do not always stop to cooperate on their choices of terminology).

One usage, which we shall see and use frequently later in the book, is that an
ordinary differential equation is homogeneous when the right-hand side is zero;
that is, there is no forcing term.

The other usage will be relevant to the present section. It bears on the “balance”
of weight among the different variables. It turns out that a differential equation
in which the x and y variables have a balanced presence is amenable to a useful
change of variables. That is what we are about to learn.
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First of all, a function g(x, y) of two variables is said to be homogeneous of
degree α, for α a real number, if

g(tx, ty) = tαg(x, y) for all t > 0.

As examples, consider:

• Let g(x, y) = x2 + xy. Then g(tx, ty) = t2 · g(x, y), so g is homogeneous
of degree 2.

• Let g(x, y) = sin[x/y]. Then g(tx, ty) = g(x, y) = t0 · g(x, y), so g is
homogeneous of degree 0.

• Let g(x, y) = √
x2 + y2. Then g(tx, ty) = t · g(x, y), so g is homogeneous

of degree 1.

In case a differential equation has the form

M(x, y) dx + N(x, y) dy = 0

and M, N have the same degree of homogeneity, then it is possible to perform the
change of variable z = y/x and make the equation separable (see Section 1.3).
Of course we then have a well-understood method for solving the equation.

The next examples will illustrate the method.

e.g.EXAMPLE 1.11
Use the method of homogeneous equations to solve the equation

(x + y) dx − (x − y) dy = 0.

SOLUTION
First notice that the equation is not exact, so we must use some other method to
find a solution. Now observe that M(x, y) = x + y and N(x, y) = −(x − y)

and each is homogeneous of degree 1. We thus rewrite the equation in the form

dy

dx
= x + y

x − y
.

Dividing numerator and denominator by x, we finally have

dy

dx
=

1 + y

x

1 − y

x

. (1)

The point of these manipulations is that the right-hand side is now plainly
homogeneous of degree 0. We introduce the change of variable

z = y

x
, (2)
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hence

y = zx

and

dy

dx
= z + x · dz

dx
. (3)

Putting (2) and (3) into (1) gives

z + x
dz

dx
= 1 + z

1 − z
.

Of course this may be rewritten as

x
dz

dx
= 1 + z2

1 − z

or

1 − z

1 + z2
dz = dx

x
.

We apply the integral, and rewrite the left-hand side, to obtain∫
dz

1 + z2
−
∫

z dz

1 + z2
=
∫

dx

x
.

The integrals are easily evaluated, and we find that

tan−1 z − 1

2
ln(1 + z2) = ln x + C.

Now we return to our original notation by setting z = y/x. The result is

tan−1 y

x
− ln

√
x2 + y2 = C.

Thus we have expressed y implicitly as a function of x, and thereby solved the
differential equation.

Math Note: Of course it should be clearly understood that most functions are
not homogeneous. The functions

• f (x, y) = x + y2

• f (x, y) = x sin y

• f (x, y) = exy

• f (x, y) = log(x2y)

have no homogeneity properties.
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e.g.EXAMPLE 1.12
Solve the differential equation

xy′ = 2x + 3y.

SOLUTION
It is plain that the equation is first-order linear, and we encourage the reader
to solve the equation by that method for practice and comparison purposes.
Instead, developing the ideas of the present section, we will use the method of
homogeneous equations.

If we rewrite the equation as

−(2x + 3y) dx + x dy = 0,

then we see that each of M = −(2x + 3y) and N = x is homogeneous of
degree 1. Thus we have as

dy

dx
= 2x + 3y

x
.

The right-hand side is homogeneous of degree 0, as we expect.
We set z = y/x and dy/dx = z + x[dz/dx]. The result is

z + x · dz

dx
= 2 + 3

y

x
= 2 + 3z.

The equation separates, as we anticipate, into

dz

2 + 2z
= dx

x
.

This is easily integrated to yield

1
2 ln(1 + z) = ln x + C

or

z = Dx2 − 1.

Resubstituting z = y/x gives

y

x
= Dx2 − 1,

hence

y = Dx3 − x.

We encourage you to check that this is indeed the solution of the given differential
equation.
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☞ You Try It: Use the method of homogeneous equations to solve the differential
equation

(y2 − x2) dx + xy dy = 0.

1.8 Integrating Factors
We used a special type of integrating factor in Section 1.4 on first-order linear
equations. At that time, we suggested that integrating factors may be applied in
some generality to the solution of first-order differential equations. The trick is in
finding the integrating factor.

In this section we shall discuss this matter in some detail, and indicate the uses
and the limitations of the method of integrating factors.

First let us illustrate the concept of integrating factor by way of a concrete
example.

e.g. EXAMPLE 1.13
The differential equation

y dx + (x2y − x) dy = 0 (1)

is plainly not exact, just because ∂M/∂y = 1 while ∂N/∂x = 2xy − 1, and
these are unequal. However, if we multiply the equation (1) through by a factor
of 1/x2, then we obtain the equivalent equation

y

x2
dx +

(
y − 1

x

)
= 0,

and this equation is exact (as you may easily verify by calculating ∂M/∂y and
∂N/∂x). And of course we have a direct method (see Section 1.5) for solving
such an exact equation.

We call the function 1/x2 in this last example an integrating factor. It is obviously
a matter of some interest to be able to find an integrating factor for any given
first-order equation. So, given a differential equation

M(x, y) dx + N(x, y) dy = 0,

we wish to find a function µ(x, y) such that

µ(x, y) · M(x, y) dx + µ(x, y) · N(x, y) dy = 0
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is exact. This entails
∂(µ · M)

∂y
= ∂(µ · N)

∂x
.

Writing this condition out, we find that

µ
∂M

∂y
+ M

∂µ

∂y
= µ

∂N

∂x
+ N

∂µ

∂x
.

This last equation may be rewritten as

1

µ

(
N

∂µ

∂x
− M

∂µ

∂y

)
= ∂M

∂y
− ∂N

∂x
.

Now we use the method of wishful thinking: we suppose not only that an inte-
grating factor µ exists, but in fact that one exists that only depends on the variable
x (and not at all on y). Then the last equation reduces to

1

µ

dµ

dx
= ∂M/∂y − ∂N/∂x

N
.

Notice that the left-hand side of this new equation is a function of x only. Hence
so is the right-hand side. Call the right-hand side g(x). Notice that g is something
that we can always compute.

Thus
1

µ

dµ

dx
= g(x),

hence
d(ln µ)

dx
= g(x)

or

ln µ =
∫

g(x) dx.

We conclude that, in case there is an integrating factor µ that depends on x

only, then

µ(x) = e
∫

g(x) dx,

where

g(x) = ∂M

∂y
− ∂N

∂x

can always be computed directly from the original differential equation.
Of course the best way to understand a new method like this is to look at some

examples. This we now do.
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e.g. EXAMPLE 1.14
Solve the differential equation

(xy − 1) dx + (x2 − xy) dy = 0.

SOLUTION
You may plainly check that this equation is not exact. It is also not separable.
So we shall seek an integrating factor that depends only on x. Now

g(x) = ∂M/∂y − ∂N/∂x

N
= [x] − [2x − y]

x2 − xy
= −1

x
.

This g depends only on x, signaling that the methodology we just developed
will actually work.

We set

µ(x) = e
∫

g(x) dx = e
∫ −1/x dx = 1

x
.

This is our integrating factor. We multiply the original differential equation
through by 1/x to obtain(

y − 1

x

)
dx + (x − y) dy = 0.

You may check that this equation is certainly exact. We omit the details of solving
this exact equation, since that methodology was covered in Section 1.5.

Of course the roles of y and x may be reversed in our reasoning for finding an
integrating factor. In case the integrating factor µ depends only on y (and not at all
on x) then we set

h(y) = −∂M/∂y − ∂N/∂x

M

and define

µ(y) = e
∫

h(y) dy.

e.g. EXAMPLE 1.15
Solve the differential equation

y dx + (2x − yey) dy = 0.
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SOLUTION
First observe that the equation is not exact as it stands. Second,

∂M/∂y − ∂N/∂x

N
= −1

2x − yey

does not depend only on x. So instead we look at

−∂M/∂y − ∂N/∂x

M
= −−1

y
,

and this expression depends only on y. So it will be our h(y). We set

µ(y) = e
∫

h(y) dy = e
∫

1/y dy = y.

Multiplying the differential equation through by µ(y) = y, we obtain the new
equation

y2 dx + (2xy − y2ey) dy = 0.

You may easily check that this new equation is exact, and then solve it by the
method of Section 1.5.

You Try It: Use the method of integrating factors to transform the differential
equation

2y

x2
dx + 1

x
dy = 0

to an exact equation. Then solve it.

Math Note: We conclude this section by noting that the differential equation

xy3 dx + yx2 dy = 0

has the properties that

• It is not exact;

• ∂M/∂y − ∂N/∂x

N
does not depend on x only;

• −∂M/∂y − ∂N/∂x

M
does not depend on y only.

Thus the method of the present section is not a panacea. We shall not always be
able to find an integrating factor. Still, the technique has its uses.
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1.9 Reduction of Order
Later in the book, we shall learn that virtually any ordinary differential equation can
be transformed to a first-order system of equations. This is, in effect, just a notational
trick, but it emphasizes the centrality of first-order equations and systems. In the
present section, we shall learn how to reduce certain higher-order equations to
first-order equations—ones which we can frequently solve.

In each differential equation in this section, x will be the independent variable
and y the dependent variables. So a typical second-order equation will involve
x, y, y′, y′′. The key to the success of each of the methods that we shall introduce
in this section is that one variable must be missing from the equation.

1.9.1 DEPENDENT VARIABLE MISSING
In case the variable y is missing from our differential equation, we make the
substitution y′ = p. This entails y′′ = p′. Thus the differential equation is reduced
to first-order.

e.g. EXAMPLE 1.16
Solve the differential equation

xy′′ − y′ = 3x2

using reduction of order.

SOLUTION
We set y′ = p and y′′ = p′, so that the equation becomes

xp′ − p = 3x2.

Observe that this new equation is first-order linear in the new dependent
variable p. We write it in standard form as

p′ − 1

x
p = 3x.

We may solve this equation by using the integrating factor µ(x) = e
∫ −1/x dx =

1/x. Thus

1

x
p′ − 1

x2
p = 3
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so [
1

x
p

]′
= 3

or ∫ [
1

x
p

]′
dx =

∫
3 dx.

Performing the integrations, we conclude that

1

x
p = 3x + C,

hence

p(x) = 3x2 + Cx.

Now we recall that p = y′, so we make that substitution. The result is

y′ = 3x2 + Cx,

hence

y = x3 + C

2
x2 + D = x3 + Ex2 + D.

We invite you to confirm that this is the complete and general solution to the
original differential equation.

e.g.EXAMPLE 1.17
Find the solution of the differential equation

[y′]2 = x2y′′.

SOLUTION
We note that y is missing, so we make the substitution p = y′, p′ = y′′. Thus
the equation becomes

p2 = x2p′.

This equation is amenable to separation of variables.
The result is

dx

x2
= dp

p2
,
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which integrates to

−1

x
= − 1

p
+ E

or

p = 1

E

(
1 − 1

1 + Ex

)

for some unknown constant E. We re-substitute p = y′ and integrate to obtain
finally that

y(x) = x

E
− 1

E2
ln(1 + Ex) + D

is the general solution of the original differential equation.

Math Note: As usual, notice that the solution of any of our second-order differ-
ential equations gives rise to two undetermined constants. Usually these will be
specified by two initial conditions.

☞ You Try It: Use the method of reduction of order to solve the differential equation

y′′ − y′ = x.

1.9.2 INDEPENDENT VARIABLE MISSING
In case the variable x is missing from our differential equation, we make the
substitution y′ = p. This time the corresponding substitution for y′′ will be
a bit different. To wit,

y′′ = dp

dx
= dp

dy

dy

dx
= dp

dy
· p.

This change of variable will reduce our differential equation to first-order. In the
reduced equation, we treat p as the dependent variable (or function) and y as the
independent variable.
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e.g.EXAMPLE 1.18
Solve the differential equation

y′′ + k2y = 0

[where it is understood that k is a real constant].

SOLUTION
We notice that the independent variable is missing. So we make the substitution

y′ = p, y′′ = p · dp

dy
.

The equation then becomes

p · dp

dy
+ k2y = 0.

In this new equation we can separate variables:

p dp = −k2y dy,

hence

p2

2
= −k2 y2

2
+ C,

p = ±
√

D − k2y2 = ±k

√
E − y2.

Now we re-substitute p = dy/dx to obtain

dy

dx
= ±k

√
E − y2.

We can separate variables to obtain

dy√
E − y2

= ±k dx,

hence

sin−1 y√
E

= ±kx + F

or
y√
E

= sin(±kx + F),



CHAPTER 1 Differential Equations34

thus

y = √
E sin(±kx + F).

Now we apply the sum formula for sine to rewrite the last expression as

y = √
E cos F sin(±kx) + √

E sin F cos(±kx).

A moment’s thought reveals that we may consolidate the constants and finally
write our general solution of the differential equation as

y = A sin(kx) + B cos(kx).

We shall learn in the next chapter a different, and perhaps more expeditious,
method of attacking examples of the last type. It should be noted quite plainly in the
last example, and also in some of the earlier examples of the section, that the method
of reduction of order basically transforms the problem of solving one second-order
equation to a new problem of solving two first-order equations. Examine each of
the examples we have presented and see whether you can say what the two new
equations are.

In the next example, we will solve a differential equation subject to an initial
condition. This will be an important idea throughout the book. Solving a differential
equation gives rise to a family of functions. Specifying the initial condition is a
natural way to specialize down to a particular solution. In applications, these initial
conditions will make good physical sense.

e.g. EXAMPLE 1.19
Use the method of reduction of order to solve the differential equation

y′′ = y′ · ey

with initial conditions y(0) = 0 and y′(0) = 1.

SOLUTION
We make the substitution

y′ = p, y′′ = p · dp

dy
.

So the equation becomes

p · dp

dy
= p · ey.

We of course may separate variables, so the equation becomes

dp = ey dy.
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This is easily integrated to give

p = ey + C.

Now we re-substitute p = y′ to find that

y′ = ey + C

or

dy

dx
= ey + C.

Because of the initial conditionsy(0) = 0 and [dy/dx](0) = 1, we may conclude
right away that C = 0. Thus our equation is

dy

ey
= dx

or

−e−y = x + D.

Of course we can rewrite the equation finally as

y = − ln(−x + E).

Since y(0) = 0, we conclude that

y(x) = − ln(−x + 1)

is the solution of our initial value problem.

You Try It: Use the method of reduction of order to solve the differential equation

y′′ − y′y = 0.

You Try It: Use the method of reduction of order to solve the initial value problem

y′′ + y′y = 0, y(0) = 1, y′(0) = 1.
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1.10 The Hanging Chain and
Pursuit Curves
1.10.1 THE HANGING CHAIN
Imagine a flexible steel chain, attached firmly at equal height at both ends, hanging
under its own weight (see Fig. 1.5). What shape will it describe as it hangs?

This is a classical problem of mechanical engineering, and its analytical solution
involves calculus, elementary physics, and differential equations. We describe it
here.

We analyze a portion of the chain between points A and B, as shown in Fig. 1.6,
where A is the lowest point of the chain and B = (x, y) is a variable point. We let

• T1 be the horizontal tension at A;
• T2 be the component of tension tangent to the chain at B;
• w be the weight of the chain per unit of length.

Here T1, T2, w are numbers. Figure 1.7 exhibits these quantities.
Notice that if s is the length of the chain between two given points, then sw is

the downward force of gravity on this portion of the chain; this is indicated in the
figure. We use the symbol θ to denote the angle that the tangent to the chain at B

makes with the horizontal.
By Newton’s first law we may equate horizontal components of force to obtain

T1 = T2 cos θ. (1)

Likewise, we equate vertical components of force to obtain

ws = T2 sin θ. (2)

Fig. 1.5.
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Fig. 1.6.
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Fig. 1.7.

Dividing the right side of (2) by the right side of (1) and the left side of (2) by the
left side of (1) and equating gives

ws

T1
= tan θ.

Think of the hanging chain as the graph of a function: y is a function of x. Then y′
at B equals tan θ , so we may rewrite the last equation as

y′ = ws

T1
.

We can simplify this equation by a change of notation: set q = y′. Then we have

q(x) = w

T1
s(x). (3)

If �x is an increment of x, then �q = q(x + �x) − q(x) is the correspond-
ing increment of q and �s = s(x + �x) − s(x) the increment in s. As Fig. 1.8
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indicates, �s is well approximated by

�s ≈
(
(�x)2 + (y′�x)2

)1/2 = (
1 + (y′)2)1/2

�x = (1 + q2)1/2�x.

Thus, from (3), we have

�q = w

T1
�s ≈ w

T1
(1 + q2)1/2�x.

Dividing by �x and letting �x tend to zero gives the equation

dq

dx
= w

T1
(1 + q2)1/2. (4)

This may be rewritten as ∫
dq

(1 + q2)1/2
= w

T1

∫
dx.

It is trivial to perform the integration on the right side of the equation, and a little
extra effort enables us to integrate the left side (use the substitution u = tan ψ , or
else use inverse hyperbolic trigonometric functions). Thus we obtain

sinh−1 q = w

T1
x + C.

We know that the chain has a horizontal tangent when x = 0 (this corresponds
to the point A—Fig. 1.7). Thus q(0) = y′(0) = 0. Substituting this into the last
equation gives C = 0. Thus our solution is

sinh−1 q(x) = w

T1
x
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or

q(x) = sinh

(
w

T1
x

)
or

dy

dx
= sinh

(
w

T1
x

)
.

Finally, we integrate this last equation to obtain

y(x) = T1

w
cosh

(
w

T1
x

)
+ D,

where D is a constant of integration. The constant D can be determined from the
height h0 of the point A from the x-axis:

h0 = y(0) = T1

w
cosh(0) + D,

hence

D = h0 − T1

w
.

Our hanging chain is completely described by the equation

y(x) = T1

w
cosh

(
w

T1
x

)
+ h0 − T1

w
.

This curve is called a catenary, from the Latin word for chain (catena). Catenaries
arise in a number of other physical problems, including the brachistochrone and
tautochrone which are discussed in this book. The St. Louis arch is in the shape of
a catenary.

Math Note: The brachistochrone and tautochrone are discussed further in
Section 6.4. These are important problems in the history of mathematics and
mechanics. The brachistochrone asks for the curve of quickest descent between
two given points. The tautochrone asks for a curve with the property that a bead
sliding down the curve will reach bottom in the same amount of time—no mat-
ter from which height it is released. Johann Bernoulli and Isaac Newton played
decisive roles in the solutions of these problems.
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1.10.2 PURSUIT CURVES
A submarine speeds across the ocean bottom in a particular path, and a destroyer at
a remote location decides to engage in pursuit. What path does the destroyer follow?
Problems of this type are of interest in a variety of applications. We examine a
few examples. The first one is purely mathematical, and devoid of “real world”
trappings.

e.g. EXAMPLE 1.20
A point P is dragged along the x–y plane by a string PT of fixed length a. If T

begins at the origin and moves along the positive y-axis, and if P starts at the
point (a, 0), then what is the path of P ?

SOLUTION
The curve described by P is called, in the classical literature, a tractrix (from
the Latin tractum, meaning “drag”). Figure 1.9 exhibits the salient features
of the problem.

Observe that we can calculate the slope of the pursuit curve at the point P in
two ways: (i) as the derivative of y with respect to x, and (ii) as the ratio of sides
of the relevant triangle. This leads to the equation

dy

dx
= −

√
a2 − x2

x
.

Fig. 1.9.
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This is a separable, first-order differential equation. We write∫
dy = −

∫ √
a2 − x2

x
dx.

Performing the integrations (the right-hand side requires the trigonometric
substitution x = sin ψ), we find that

y = a ln

(
a + √

a2 − x2

x

)
−
√

a2 − x2

is the equation of the tractrix.2

e.g.EXAMPLE 1.21
A rabbit begins at the origin and runs up the y-axis with speed a feet per second.
At the same time, a dog runs at speed b from the point (c, 0) in pursuit of the
rabbit. What is the path of the dog?

SOLUTION
At time t , measured from the instant both the rabbit and the dog start, the rabbit
will be at the point R = (0, at) and the dog at D = (x, y). We wish to solve for
y as a function of x. Refer to Fig. 1.10.

The premise of a pursuit analysis is that the line through D and R is tangent to
the path—that is, the dog will always run straight at the rabbit. This immediately
gives the differential equation

dy

dx
= y − at

x
.

This equation is a bit unusual for us, since x and y are both unknown functions
of t . First, we rewrite the equation as

xy′ − y = −at.

[Here the ′ on y stands for differentiation in x.] We differentiate this equation
with respect to x, which gives

xy′′ = −a
dt

dx
.

2This curve is of considerable interest in other parts of mathematics. If it is rotated about the y-axis, then the result
is a surface that gives a model for non-Euclidean geometry. The surface is called a pseudosphere in differential
geometry. It is a surface of constant negative curvature (as opposed to a traditional sphere, which is a surface of
constant positive curvature).
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x

Fig. 1.10.

Since s is arc length along the path of the dog, it follows that ds/dt = b. Hence

dt

dx
= dt

ds
· ds

dx
= −1

b
·
√

1 + (y′)2;
here the minus sign appears because s decreases when x increases (see Fig. 1.10).
Combining the last two displayed equations gives

sy′′ = a

b

√
1 + (y′)2.

For convenience, we set k = a/b, y′ = p, and y′′ = dp/dx (the lat-
ter two substitutions being one of our standard reduction of order techniques).
Thus we have

dp√
1 + p2

= k
dx

x
.

Now we may integrate, using the condition p = 0 when x = c. The result is

ln

(
p +

√
1 + p2

)
= ln

(x

c

)k

.

When we solve for p, we find that

dy

dx
= p = 1

2

[(x

c

)k −
( c

x

)k
]

.
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In order to continue the analysis, we need to know something about the
relative sizes of a and b. Suppose, for example, that a < b (so k < 1), mean-
ing that the dog will certainly catch the rabbit. Then we can integrate the last
equation to obtain

y(x) = 1

2

[
c

k + 1

(x

c

)k+1 − c

(1 − k)

( c

x

)k−1
]

+ D.

Since y = 0 when x = c, we find that D = ck. Of course the dog catches the
rabbit when x = 0. Since both exponents on x are positive, we can set x = 0
and solve for y to obtain y = ck as the point at which the dog and the rabbit
meet.

We invite you to consider what happens when a = b and hence k = 1.

Math Note: The idea of and analysis of pursuit curves is of great interest to the
navy. Battle strategies are devised using these ideas.

1.11 Electrical Circuits
We have alluded elsewhere in the book to the fact that our analyses of vibrating
springs and other mechanical phenomena are analogous to the situation for electrical
circuits. Now we shall examine this matter in some detail.

We consider the flow of electricity in the simple electrical circuit exhibited in
Fig. 1.11. The elements that we wish to note are these:

A. A source of electromotive force (emf ) E—perhaps a battery or generator—
which drives electric charge and produces a current I . Depending on the
nature of the source, E may be a constant or a function of time.

B. A resistor of resistance R, which opposes the current by producing a drop
in emf of magnitude

ER = RI.

This equation is called Ohm’s Law.
C. An inductor of inductance L, which opposes any change in the current by

producing a drop in emf of magnitude

EL = L · dI

dt
.

D. Acapacitor (or condenser) of capacitance C, which stores the charge Q. The
charge accumulated by the capacitor resists the inflow of additional charge,
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Fig. 1.11.

and the drop in emf arising in this way is

EC = 1

C
· Q.

Furthermore, since the current is the rate of flow of charge, and hence the
rate at which charge builds up on the capacitor, we have

I = dQ

dt
.

Those unfamiliar with the theory of electricity may find it helpful to draw an
analogy here between the current I and the rate of flow of water in a pipe. The
electromotive force E plays the role of a pump producing pressure (voltage) that
causes the water to flow. The resistance R is analogous to friction in the pipe—
which opposes the flow by producing a drop in the pressure. The inductance L is
a sort of inertia that opposes any change in flow by producing a drop in pressure
if the flow is increasing and an increase in pressure if the flow is decreasing. To
understand this last point, think of a cylindrical water storage tank that the liquid
enters through a hole in the bottom. The deeper the water in the tank (Q), the harder
it is to pump new water in; and the large the base of the tank (C) for a given quantity
of stored water, the shallower is the water in the tank and the easier to pump in
new water.

The four circuit elements act together according to Kirchhoff’s Law, which states
that the algebraic sum of the electromotive forces around a closed circuit is zero.
This physical principle yields

E − ER − EL − EC = 0



CHAPTER 1 Differential Equations 45

or

E − RI − L
dI

dt
− 1

C
Q = 0,

which we rewrite in the form

L
dI

dt
+ RI + 1

C
Q = E. (1)

We may perform our analysis by regarding either the current I or the charge Q

as the dependent variable (obviously time t will be the independent variable).

• In the first instance, we shall eliminate the variable Q from (1) by differenti-
ating the equation with respect to t and replacing dQ/dt by I (since current
is indeed the rate of change of charge). The result is

L
d2I

dt2
+ R

dI

dt
+ 1

C
I = dE

dt
.

• In the second instance, we shall eliminate the I by replacing it by dQ/dt .
The result is

L
d2Q

dt2
+ R

dQ

dt
+ 1

C
Q = E. (2)

Both these ordinary differential equations are second-order linear with constant
coefficients. We shall study these in detail in Section 2.1. For now, in order to use
the techniques we have already learned, we assume that our system has no capacitor
present. Then the equation becomes

L
dI

dt
+ RI = E. (3)

e.g.EXAMPLE 1.22
Solve equation (3) when an initial current I0 is flowing and a constant emf E0
is impressed on the circuit at time t = 0.

SOLUTION
For t ≥ 0 our equation is

L
dI

dt
+ RI = E0.

We can separate variables to obtain

dI

E0 − RI
= 1

L
dt.
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We integrate and use the initial condition I (0) = I0 to obtain

ln(E0 − RI) = −R

L
t + ln(E0 − RI0),

hence

I = E0

R
+
(

I0 − E0

R

)
e−Rt/L.

We have learned that the current I consists of a steady-state component
E0/R and a transient component (I0 − E0/R)e−Rt/L that approaches zero as
t → +∞. Consequently, Ohm’s Law E0 = RI is nearly true for t large.
We also note that if I0 = 0, then

I = E0

R
(1 − e−Rt/L);

if instead E0 = 0, then I = I0e
−Rt/L.

Exercises
1. Verify that the following functions (explicit or implicit) are solutions of

the corresponding differential equations:
(a) y = x2 + c y′ = 2x

(b) y = cx2 xy′ = 2y

2. Find the general solution of each of the following differential equations:
(a) y′ = e3x − x

(b) y′ = xex2

3. For each of the following differential equations, find the particular
solution that satisfies the given initial condition:
(a) y′ = xex y = 3 when x = 1
(b) y′ = 2 sin x cos x y = 1 when x = 0

4. Use the method of separation of variables to solve each of these ordinary
differential equations:
(a) x5y′ − y−5 = 0
(b) y′ = 4xy
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5. For each of the following differential equations, find the particular
solution that satisfies the additional given property (called an initial
condition):
(a) y′y = x + 1 y = 3 when x = 1
(b) (dy/dx)x2 = y y = 2 when x = 1

6. Find the general solution of each of the following first-order, linear
ordinary differential equations:
(a) y′ − xy = 0
(b) y′ + 2xy = 2x

7. Atank contains 10 gallons of brine in which 2 pounds of salt are dissolved.
New brine containing 1 pound of salt per gallon is pumped into the tank
at the rate of 3 gallons per minute. The mixture is stirred and drained
off at the rate of 4 gallons per minute. Find the amount x = x(t) of salt
in the tank at any time t .

8. Determine which of the following equations is exact. Solve those that
are exact by using the method of exact equations.

(a)

(
x + 2

y

)
dy + y dx = 0

(b) (sin x tan y + 1) dx − cos x sec2 y dy = 0

9. What are the orthogonal trajectories of the family of curves y = cx4?

10. Verify that each of the following equations is homogeneous, and then
solve it:

(a) x
(

sin
y

x

) dy

dx
= y sin

y

x
+ x

(b) xy′ = y + 2xe−y/x

11. Solve each of the following differential equations by finding an integrat-
ing factor:
(a) 12yx2 dx + 12x3 dy = 0
(b) (xy − 1) dx + (x2 − xy) dy = 0

12. Find a solution to each of the following differential equations using the
method of reduction of order:
(a) xy′′ = y′ + (y′)3

(b) y′′ − k2y = 0



2
CHAPTER

Second-Order
Equations

2.1 Second-Order Linear Equations with
Constant Coefficients

Second-order linear equations are important because they arise frequently in engi-
neering and physics. For instance, acceleration is given by the second derivative,
and force is mass times acceleration.

In this section we learn about second-order linear equations with constant coef-
ficients. The “linear” attribute means, just as it did in the first-order situation, that
the unknown function and its derivatives are not multiplied together, are not raised
to powers, and are not the arguments of other function. So, for example,

y′′ − 3y′ + 6y = 0

48
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is second-order linear while

sin y′′ − y′ + 5y = 0

and

y · y′′ + 4y′ + 3y = 0

are not.
The “constant coefficient” attribute means that the coefficients in the equation

are not functions—they are constants. Thus a second-order linear equation with
constant coefficient will have the form

ay′′ + by′ + cy = d, (1)

where a, b, c, d are constants.
We in fact begin with the homogeneous case; this is the situation in which d = 0.

We solve the equation (1) by a process of organized guessing: any solution of (1)

will be a function that cancels with its derivatives. Thus it is a function that is
similar in form to its derivatives. Certainly exponentials fit this description. Thus
we guess a solution of the form

y = erx.

Plugging this guess into (1) gives

a
[
erx

]′′ + b
[
erx

]′ + c
[
erx

] = 0.

Calculating the derivatives, we find that

a · r2 · erx + b · r · erx + c · erx = 0

or

[ar2 + br + c] · erx = 0.

This last equation can only be true (for all x) if

ar2 + br + c = 0.

Of course this is a simple quadratic equation (called the associated polynomial
equation), and we may solve it using the quadratic formula. This process will lead
to our solution set.

e.g.EXAMPLE 2.1
Solve the differential equation

y′′ − 5y′ + 4y = 0.
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SOLUTION
Following the paradigm just outlined, we guess a solution of the form y = erx .
This leads to the quadratic equation for r given by

r2 − 5r + 4 = 0.

Of course this easily factors into

(r − 1)(r − 4) = 0,

so r = 1, 4.
Thus ex and e4x are solutions to the differential equation. A general solution

is given by

y = A · ex + B · e4x, (2)

where A and B are arbitrary constants. You may check that any function of
the form (2) solves the original differential equation. Observe that our general
solution (2) has two undetermined constants, which is consistent with the fact
that we are solving a second-order differential equation.

e.g. EXAMPLE 2.2
Solve the differential equation

2y′′ + 6y′ + 2y = 0.

SOLUTION
The associated polynomial equation is

2r2 + 6r + 2 = 0.

This equation does not factor in any obvious way, so we use the quadratic
formula:

r = −6 ± √
62 − 4 · 2 · 2

2 · 2
= −6 ± √

20

4
= −3 ± √

5

2
.

Thus the general solution to the differential equation is

y = A · e
−3+√

5
2 ·x + B · e

−3−√
5

2 ·x.

Math Note: Much of the analysis that we have applied to second-order, con-
stant coefficient, linear equations will apply, virtually without change, to constant
coefficient, linear equations of high order. We shall say more about this topic in
Section 2.7.
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You Try It: Find the general solution of the second-order linear differential
equation

y′′ − 6y′ + 5y = 0.

e.g.EXAMPLE 2.3
Solve the differential equation

y′′ − 6y′ + 9y = 0.

SOLUTION
In this case the associated polynomial is

r2 − 6r + 9 = 0.

This algebraic equation has the single solution r = 3. But our differential
equation is second-order, and therefore we seek two independent solutions.

In the case that the associated polynomial has just one root, we find the other
solution with an augmented guess: Our new guess is y = x ·e3x . You may check
for yourself that this new guess is also a solution. So the general solution of the
differential equation is

y = A · e3x + B · xe3x.

You Try It: Find the general solution of the differential equation

y′′ + 4y′ + 4y = 0.

As a prologue to our next example, we must review some ideas connected with
complex exponentials. Recall that, for a real variable x,

ex = 1 + x + x2

2! + x3

3! + · · · =
∞∑

j=0

xj

j ! .

This equation persists if we replace the real variable x by a complex variable z.
Thus

ez = 1 + z + z2

2! + z3

3! + · · · =
∞∑

j=0

zj

j ! .
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Now write z = x + iy, and let us gather together the real and imaginary parts of
this last equation:

ez = ex+iy

= ex · eiy

= ex ·
[

1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + · · ·
]

= ex ·
[(

1 − y2

2! + y4

4! − + · · ·
)

+ i

(
y − y3

3! + y5

5! − + · · ·
)]

= ex[cos y + i sin y].
In the special case x = 0, the equation

eiy = cos y + i sin y

is known as Euler’s formula, in honor of Leonhard Euler (1707–1783). We will
also make considerable use of the more general formula

ex+iy = ex [cos y + i sin y].

In using complex numbers, you should of course remember that the square root
of a negative number is an imaginary number. For instance,

√−4 = ±2i and
√−25 = ±5i.

e.g. EXAMPLE 2.4
Solve the differential equation

4y′′ + 4y′ + 2y = 0.

SOLUTION
The associated polynomial is

4r2 + 4r + 2 = 0.

We apply the quadratic equation to solve it:

r = −4 ± √
42 − 4 · 4 · 2

2 · 4
= −4 ± √−16

8
= −1 ± i

2
.

Thus the solutions to our differential equation are

y = e
−1+i

2 ·x and y = e
−1−i

2 ·x.
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A general solution is given by

y = A · e
−1+i

2 ·x + B · e
−1−i

2 ·x.

Using Euler’s formula, we may rewrite this general solution as

y = A · e−x/2[cos x/2 + i sin x/2]
+ Be−x/2[cos x/2 − i sin x/2]. (3)

We shall now use some propitious choices of A and B to extract meaningful
real-valued solutions. First choose A = 1/2, B = 1/2. Putting these values in
equation (3) gives

y = e−x/2 cos x/2.

Now taking A = −i/2, B = i/2 gives the solution

y = e−x/2 sin x/2.

As a result of this little trick, we may rewrite the general solution to our
differential equation as

y = A · e−x/2 cos x/2 + B · e−x/2 sin x/2.

You Try It: Find the general solution of the differential equation

y′′ + y′ + y = 0.

Write this solution without using complex numbers (but certainly use complex
numbers to find the solution).

Math Note: Complex numbers and complex analysis have a long history. For
a long time these numbers were considered to be suspect—they did not really
exist, but they had certain uses that made them tolerable. Today we know how to
construct the complex numbers in a concrete manner (see [KRA2], [KRA4]).

We conclude this section with a last example of homogeneous, second-order,
linear ordinary differential equation with constant coefficients, and with complex
roots, just to show how straightforward the methodology really is.

e.g.EXAMPLE 2.5
Solve the differential equation

y′′ − 2y′ + 5y = 0.
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SOLUTION
The associated polynomial is

r2 − 2r + 5 = 0.

According to the quadratic formula, the solutions of this equation are

r = 2 ±√
(−2)2 − 4 · 1 · 5

2
= 2 ± 4i

2
= 1 ± 2i.

Hence the roots of the associated polynomial are r = 1 + 2i and 1 − 2i.
According to what we have learned, two independent solutions to the

differential equation are thus given by

y = ex cos 2x and y = ex sin 2x.

Therefore the general solution is given by

y = Aex cos 2x + Bex sin 2x.

☞ You Try It: Find the general solution of the differential equation

2y′′ − 3y′ + 6y = 0.

2.2 The Method of Undetermined
Coefficients

“Undetermined coefficients” is a method of organized guessing. We have already
seen guessing, in one form or another, serve us well in solving first-order linear
equations and also in solving homogeneous second-order linear equations with
constant coefficients. Now we shall expand the technique to cover inhomogeneous
second-order linear equations.

We must begin by discussing what the solution to such an equation will look
like. Consider an equation of the form

ay′′ + by′ + cy = f (x). (1)

Suppose that we can find (by guessing or by some other means) a function y =
y0(x) that satisfies this equation. We call y0 a particular solution of the differential
equation. Notice that it will not be the case that a constant multiple of y will also
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solve the equation. In fact, if we consider y = A · y0 and plug this function into
the equation, we obtain

a[Ay0]′′ + b[Ay0]′ + c[Ay0] = A[ay′′
0 + by′

0 + cy0] = A · f.

But we expect the solution of a second-order equation to have two free constants.
Where will they come from?

The answer is that we must separately solve the associated homogeneous
equation, which is

ay′′ + by′ + cy = 0.

If y1 and y2 are solutions of this equation, then of course (as we learned in the last
section) we know that A ·y1 +B ·y2 will be a general solution of this homogeneous
equation. But then the general solution of the original differential equation (1)
will be

y = y0 + A · y1 + B · y2.

Math Note: We invite you to verify that, no matter what the choice of A and B,
this y will be a solution of the original differential equation (1).

These ideas are best hammered home by the examination of some examples.

e.g.EXAMPLE 2.6
Find the general solution of the differential equation

y′′ + y = sin x. (2)

SOLUTION
We might guess that y = sin x or y = cos x is a particular solution of this
equation. But in fact these are solutions of the homogeneous equation

y′′ + y = 0

(as we may check by using the techniques of the last section, or just by direct
verification). So if we want to find a particular solution of (2), then we must try
a bit harder.

Inspired by our experience with the case of repeated roots for the second-order,
homogeneous linear equation with constant coefficients (as in the last section),
we shall instead guess

y0 = α · x cos x + β · x sin x
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for our particular solution. Notice that we allow arbitrary constants in front of
the functions x cos x and x sin x. These are the “undetermined coefficients” that
we seek.

Now we simply plug the guess into the differential equation and see what
happens. Thus

[α · x cos x + β · x sin x]′′ + [α · x cos x + β · x sin x] = 0

or

α (2(− sin x) + x(− cos x)) + β(2 cos x

+ x(− sin x)) + αx cos x + βx sin x = 0

or

(−2α) sin x + (2β) cos x + (−β + β)x sin x + (−α + α)x cos x = sin x.

We see that there is considerable cancellation, and we end up with

−2α sin x + 2β cos x = sin x.

The only way that this can be an identity in x is if −2α = 1 and 2β = 0 or
α = −1/2 and β = 0.

Thus our particular solution is

y0 = −1
2x cos x

and our general solution is

y = −1
2x cos x + A cos x + B sin x.

e.g. EXAMPLE 2.7
Find the solution of

y′′ − y′ − 2y = 4x2

that satisfies y(0) = 0 and y′(0) = 1.

SOLUTION
The associated homogeneous equation is

y′′ − y′ − 2y = 0

and this has associated polynomial

r2 − r − 2 = 0.

The roots are obviously r = 2, −1 and so the general solution of the associated
homogeneous equation is y = A · e2x + B · e−x .
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For a particular solution, our guess will be a polynomial. Guessing a second-
degree polynomial makes good sense, since a guess of a higher-order poly-
nomial is going to produce terms of high degree that we do not want. Thus we
guess that yp(x) = αx2 + βx + γ . Plugging this guess into the differential
equation gives

[αx2 + βx + γ ]′′ − [αx2 + βx + γ ]′ − 2[αx2 + βx + γ ] = 4x2

or

[2α] − [α · 2x + β] − [2αx2 + 2βx + 2γ ] = 4x2.

Grouping like terms together gives

−2αx2 + [−2α − 2β]x + [2α − β − 2γ ] = 4x2.

As a result, we find that

−2α = 4

−2α − 2β = 0

2α − β − 2γ = 0.

This system is easily solved to yield α = −2, β = 2, γ = −3. So our
particular solution is y0(x) = −2x2 + 2x − 3. The general solution of the
original differential equation is then

y(x) = (−2x2 + 2x − 3) + A · e2x + B · e−x.

Now we seek the solution that satisfies the initial conditions y(0) = 0 and
y′(0) = 1. These translate to

0 = y(0) = −2 · 02 + 2 · 0 − 3 + A · e0 + B · e0

and

1 = y′(0) = −4 · 0 + 2 − 0 + 2A · e0 − B · e0.

This gives the equations

0 = −3 + A + B

1 = 2 + 2A − B.

Of course we can solve this system quickly to find that A = 1/3, B = 8/3.
In conclusion, the solution to our initial boundary value problem is

y(x) = −2x2 + 2x − 3 + 1
3 · e2x − 8

3 · e−x.
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☞ You Try It: Solve the differential equation

y′′ − y = cos x.

☞ You Try It: Find the solution to the initial value problem

y′′ + y′ = x, y(0) = 1, y′(0) = 0.

Math Note: If we wish to use the method of undetermined coefficients to solve
the differential equation

y(iv) + 2y(ii) + y = sin x,

then we must note that sin x, cos x, x sin x, and x cos x are all solutions of the
associated homogeneous equation

y(iv) + 2y(ii) + y = 0.

Thus we will need to guess a particular solution of the form Ax2 cos x +Bx2 sin x.
We invite the reader to try this guess and find a particular solution.

2.3 The Method of Variation of Parameters
Variation of parameters is a method for producing a particular solution to an
inhomogeneous equation by exploiting the (usually much simpler to find) solu-
tions to the associated homogeneous equation.

Let us consider the differential equation

y′′ + p(x)y′ + q(x)y = r(x). (1)

Assume that, by some method or other, we have found the general solution of the
associated homogeneous equation

y′′ + p(x)y′ + q(x)y = 0

to be

y = Ay1(x) + By2(x).

What we do now is to guess that a particular solution to the original equation (1)

has the form

y0(x) = v1(x) · y1(x) + v2(x) · y2(x). (2)
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Now let us proceed on this guess. We calculate that

y′
0 = [v′

1y1 + v1y
′
1] + [v′

2y1 + v2y
′
2] = [v′

1y1 + v′
2y2] + [v1y

′
1 + v2y

′
2]. (3)

Now we also need to calculate the second derivative of y0. But we do not want the
extra complication of having second derivatives of v1 and v2. So we will mandate
that the first expression in brackets on the far right side of (3) is identically zero.
Thus we have

v′
1y1 + v′

2y2 ≡ 0. (4)

Thus

y′
0 = v1y

′
1 + v2y

′
2

and we can now calculate that

y′′
0 = [v′

1y
′
1 + v1y

′′
1 ] + [v′

2y
′
2 + v2y

′′
2 ]. (5)

Now let us substitute (2), (3), and (5) into the differential equation. The result is([v′
1y

′
1 + v1y

′′
1 ] + [v′

2y
′
2 + v2y

′′
2 ])+ p(x) · (v1y

′
1 + v2y

′
2

)
+ q(z) · (v1y1 + v2y2).

After some algebraic manipulation, this becomes

v1
(
y′′

1 + py′
1 + qy1

)+ v2
(
y′′

2 + py′
2 + qy2

)+ v′
1y

′
1 + v′

2y
′
2 = r.

Since y1, y2 are solutions of the homogeneous equation, the expressions in
parentheses vanish. The result is

v′
1y

′
1 + v′

2y
′
2 = r. (6)

At long last we have two equations to solve in order to determine what v1 and
v2 must be. Namely, we use equations (4) and (6) to obtain

v′
1y1 + v′

2y2 = 0,

v′
1y

′
1 + v′

2y
′
2 = r.

In practice, these can be often solved for v′
1, v

′
2, and then integration tells us what

v1, v2 must be.
As usual, the best way to understand a new technique is by way of some examples.

e.g.EXAMPLE 2.8
Find the general solution of

y′′ + y = csc x.
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SOLUTION
Of course the general solution to the associated homogeneous equation is
familiar. It is

y(x) = A sin x + B cos x.

In order to find a particular solution, we need to solve the equations

v′
1 sin x + v′

2 cos x = 0,

v′
1(cos x) + v′

2(− sin x) = csc x.

This is a simple algebra problem, and we find that

v′
1(x) = cot x and v′

2(x) = −1.

As a result,

v1(x) = ln(sin x) and v2(x) = −x.

[As you will see, we do not need any constants of integration.]
The final result is then that a particular solution of our differential equation is

y0(x) = v1(x)y1(x) + v2(x)y2(x) = [ln(sin x)] · sin x + [−x] · cos x.

We invite you to check that this solution actually works. The general solution
of the original differential equation is

y(x) = ([ln(sin x)] · sin x + [−x] · cos x) + A sin x + B cos x.

e.g. EXAMPLE 2.9
Solve the differential equation

y′′ − y′ − 2y = 4x2

using the method of variation of parameters.

SOLUTION
You will note that, in the last section (Example 2.7), we solved this same
equation using the method of undetermined coefficients (or organized guessing).
Now we will solve it a second time by our new method.

As we saw before, the homogeneous equation has the general solution

y = Ae2x + Be−x.
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Now we solve the system

v′
1e

2x + v′
2e

−x = 0,

v′
1[2e2x] + v′

2[−e−x] = 4x2.

The result is

v′
1(x) = 4

3
x2e−2x and v′

2(x) = −4

3
x2ex.

We may use integration by parts to then determine that

v1(x) = −2x2

3
e−2x − 2x

3
e−2x − 1

3
e−2x

and

v2(x) = −4x2

3
ex + 8x

3
ex − 8

3
ex.

We finally see that a particular solution to our differential equation is

y0(x) = v1(x) · y1(x) + v2(x)y2(x)

=
[
−2x2

3
e−2x − 2x

3
e−2x − 1

3
e−2x

]
· e2x

+
[
−4x2

3
ex + 8x

3
ex − 8

3
ex

]
· e−x

=
[
−2x2

3
− 2x

3
− 1

3

]
+
[
−4x2

3
+ 8x

3
− 8

3

]
= −2x2 + 2x − 3.

In conclusion, the general solution of the original differential equation is

y(x) =
(
−2x2 + 2x − 3

)
+ Ae2x + Be−x.

As you can see, this is the same answer that we obtained in Section 2.2,
Example 2.7, by the method of undetermined coefficients.

You Try It: Use the method of variation of parameters to find the general solution
of the differential equation

y′′ − 2y = x + 1.
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☞ You Try It: Use the method of this section to solve the initial value problem

y′′ + 3y′ + 2y = cos x, y(0) = 0, y′(0) = 2.

Math Note: Notice that the method of variation of parameters always gives a
system of two equations in two unknowns that we can solve for v′

1 and v′
2. After

that, it might be tricky to solve for v1 and v2. Even so, it can be useful to know
v′

1 and v′
2. Numerical integration techniques and other devices can still be used to

obtain information about the solution of the original differential equation.

2.4 The Use of a Known Solution to
Find Another

Consider a general second-order linear equation of the form

y′′ + p(x)y′ + q(x)y = 0. (1)

It often happens—and we have seen this in our earlier work—that one can either
guess or elicit one solution to the equation. But finding the second independent
solution is more difficult. In this section we introduce a method for finding that
second solution.

In fact we exploit a notational trick that served us well in Section 2.3 on variation
of parameters. Namely, we will assume that we have found the one solution y1
and we will suppose that the second solution we seek is y2 = v · y1 for some
undetermined factor v. Our job, then, is to find v.

Assuming, then, that y1 is a solution of (1), we will substitute y2 = v · y1 into
(1) and see what this tells us about calculating v. We see that

[v · y1]′′ + p(x) · [v · y1]′ + r(x) · [v · y1] = 0

or

[v′′ · y1 + 2v′ · y′
1 + v · y′′

1 ] + p(x) · [v′ · y1 + v · y′
1] + r(x) · [v · y1] = 0.

We rearrange this identity to find that

v · [y′′
1 + p(x) · y′

1 + y1] + [v′′ · y1] + [v′ · (2y′
1 + p · y1)] = 0.

Now we are assuming that y1 is a solution of the differential equation (1), so the
first expression in brackets must vanish. As a result,

[v′′ · y1] + [v′ · (2y′
1 + p · y1)] = 0.
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In the spirit of separation of variables, we may rewrite this equation as

v′′

v′ = −2
y′

1

y1
− p.

Integrating once, we find that

ln v′ = −2 ln y1 −
∫

p(x) dx

or

v′ = 1

y2
1

e− ∫
p(x) dx.

Applying the integral one last time yields

v =
∫

1

y2
1

e− ∫
p(x) dx dx. (2)

In order to really understand what this means, let us apply the method to some
particular differential equations.

e.g.EXAMPLE 2.10
Find the general solution of the differential equation

y′′ − 4y′ + 4y = 0.

SOLUTION
When we first encountered this type of equation in Section 2.1, we learned to
study the associated polynomial

r2 − 4y + 4 = 0.

Unfortunately, the polynomial has only the repeated root r = 2, so we at first
find just the one solution y1(x) = e2x . Where do we find another?

In Section 2.1, we found the second solution by guessing. Now we have
a more systematic way of finding that second solution, and we use it now
to test out our new methodology. Observe that p(x) = −4 and q(x) = 4.
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According to formula (2), we can find a second solution y2 = v · y1 with

v =
∫

1

y2
1

e− ∫
p(x) dx dx

=
∫

1

[e2x]2
e− ∫ −4 dx dx

=
∫

e−4x · e4x dx

=
∫

1 dx = x.

Thus the second solution to our differential equation is y2 = v · y1 = x · e2x

and the general solution is

y = A · e2x + B · xe2x.

Next we turn to an example of a nonconstant coefficient equation.

e.g. EXAMPLE 2.11
Find the general solution of the differential equation

x2y′′ + xy′ − y = 0.

SOLUTION
Differentiating a monomial once lowers the degree by 1 and differentiating it
twice lowers the degree by 2. So it is natural to guess that this differential
equation has a power of x as a solution. And y1(x) = x works.

We use formula (2) to find a second solution of the form y2 = v · y1. First
we rewrite the equation in the standard form as

y′′ + 1

x
y′ − 1

x2
y = 0

and we note then that p(x) = 1/x and q(x) = −1/x2. Thus we see that

v(x) =
∫

1

y2
1

e− ∫
p(x) dx dx

=
∫

1

x2
e− ∫

1/x dx dx

=
∫

1

x2
e− ln x dx



CHAPTER 2 Second-Order Equations 65

=
∫

1

x2

1

x
dx

= − 1

2x2
.

In conclusion, y2 = v · y1 = [−1/(2x2)] · x = −1/(2x) and the general
solution is

y(x) = A · x + B ·
(

− 1

2x

)
.

You Try It: Use the methodology of this section to find the general solution of
the differential equation

y′′ − 1

2x
y′ − 1

x2
y = 0.

[Hint: One solution will be a positive, integer power of x.]

Math Note: As with the method of variation of parameters, we find with this
new technique for finding a second solution that we will always be able to write
down the integral for v. Whether we will actually be able to evaluate the integral
and find v explicitly will depend on the particular problem that we are studying.
But, even when the integral cannot be explicitly evaluated, we can use numerical
and other techniques to obtain information about v and then about y2.

2.5 Vibrations and Oscillations
When a physical system in stable equilibrium is disturbed, then it is subject to
forces that tend to restore the equilibrium. The result is a system that can lead to
oscillations or vibrations. It is described by an ordinary differential equation of
the form

d2x

dt2
+ p(t) · dx

dt
+ q(t)x = r(t).

In this section we shall learn how and why such an equation models the physical
system we have described, and we shall see how its solution sheds light on the
physics of the situation.
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2.5.1 UNDAMPED SIMPLE HARMONIC MOTION
Our basic example will be a cart of mass M attached to a nearby wall by means of
a spring. See Fig. 2.1. The spring exerts no force when the cart is at its rest position
x = 0. According to Hooke’s Law, if the cart is displaced a distance x, then the
spring exerts a proportional force Fs = −kx, where k is a positive constant known
as Hooke’s constant. Observe that if x > 0 then the cart is moved to the right and
the spring pulls to the left; so the force is negative. Obversely, if x < 0 then the
cart is moved to the left and the spring resists with a force to the right; so the force
is positive.

Newton’s second law of motion says that the mass of the cart times its accele-
ration equals the force acting on the cart. Thus

M · d2x

dt2
= Fs = −k · x.

As a result,

d2x

dt2
+ k

M
x = 0.

It is both convenient and traditional to let a = √
k/M (both k and M are positive)

and thus to write the equation as

d2x

dt2
+ a2x = 0.

Of course this is a familiar differential equation for us, and we can write its
general solution immediately:

x(t) = A sin at + B cos at.

M

0

x
Fig. 2.1.
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Now suppose that the cart is pulled to the right to an initial position of x = x0 and
then is simply released (with initial velocity 0). Then we have the initial conditions

x(0) = x0 and
dx

dt
(0) = 0.

Thus

x0 = A sin(a · 0) + B cos(a · 0)

0 = Aa cos(a · 0) − Ba sin(a · 0)

or

x0 = B

0 = A · a.

We conclude that B = x0, A = 0, and we find the solution of the system to be

x(t) = x0 cos at.

In other words, if the cart is displaced a distance x0 and released, then the result
is a simple harmonic motion (described by the cosine function) with amplitude x0
(i.e., the cart glides back and forth, x0 units to the left of the origin and then x0
units to the right) and with period T = 2π/a (which means that the motion repeats
itself every 2π/a units of time).

The frequency f of the motion is the number of cycles per unit of time, hence
f ·T = 1, or f = 1/T = a/(2π). It is useful to substitute back in the actual value
of a so that we can analyze the physics of the system. Thus

Amplitude = x0

Period = T = 2π
√

M√
k

Frequency = f =
√

k

2π
√

M
.

Math Note: We see that if the stiffness of the spring k is increased then the
period becomes smaller and the frequency increases. Likewise, if the mass of
the cart is increased then the period increases and the frequency decreases. Thus
the mathematical analysis coincides with, and reinforces, our physical intuition.
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2.5.2 DAMPED VIBRATIONS
It probably has occurred to you that the physical model in the last subsection is
not realistic. Typically, a cart that is attached to a spring and released, just as we
have described, will enter a harmonic motion that dies out over time. In other
words, resistance and friction will cause the system to be damped. Let us add that
information to the system.

Physical considerations make it plausible to postulate that the resistance is
proportional to the velocity of the moving cart. Thus the resistive force is

Fd = −c
dx

dt
,

where Fd denotes damping force and c > 0 is a positive constant that measures the
resistance of the medium (air or water or oil, etc.). Notice, therefore, that when the
cart is traveling to the right, then dx/dt > 0 and therefore the force of resistance
is negative (i.e., in the other direction). Likewise, when the cart is traveling to the
left, then dx/dt < 0 and the force of resistance is positive.

Since the total of all the forces acting on the cart equals the mass times the
acceleration, we now have

M · d2x

dt2
= Fs + Fd.

In other words,

d2x

dt2
+ c

M
· dx

dt
+ k

M
· x = 0.

Because of convenience and tradition, we again take a = √
k/M and we set

b = c/(2M). Thus the differential equation takes the form

d2x

dt2
+ 2b · dx

dt
+ a2 · x = 0.

This is a second-order, linear, homogeneous ordinary differential equation with
constant coefficients. The associated polynomial is

r2 + 2br + a2 = 0,

and it has roots

r1, r2 = −2b ± √
4b2 − 4a2

2
= −b ±

√
b2 − a2.

Now we must consider three cases.
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Case A: b2 − a2 > 0 In words, we are assuming that the frictional force (which
depends on c) is significantly larger than the stiffness of the spring (which depends
on k). Thus we would expect the system to damp heavily. In any event, the calcu-
lation of r1, r2 involves the square root of a positive real number, and thus r1, r2
are distinct real (and negative) roots of the associated polynomial equation.

Thus the general solution of our system in this case is

x = Aer1t + Ber2t ,

where (we repeat) r1, r2 are negative real numbers. We apply the initial conditions
x(0) = x0, dx/dt (0) = 0, just as in the last section (details are left to you).
The result is the particular solution

x(t) = x0

r1 − r2

(
r1e

r2t − r2e
r1t
)
. (1)

Notice that, in this heavily damped system, no oscillation occurs (i.e., there
are no sines or cosines in the expression for x(t)). The system simply dies out.
Figure 2.2 exhibits the graph of the function in (1).

Math Note: The type of harmonic motion illustrated in this last discussion, and
in Fig. 2.2, is the ideal motion that is induced by the resistance of a shock absorber
on an automobile. The whole purpose of a shock absorber is to make the harmonic
motion, that would be induced by the car hitting a bump, die out immediately.

Case B: b2 − a2 = 0 This is the critical case, where the resistance balances
the force of the spring. We see that b = a (both are known to be positive) and
r1 = r2 = −b = −a. We know, then, that the general solution to our differential

Fig. 2.2.
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equation is

x(t) = Ae−at + Bte−at .

When the standard initial conditions are imposed, we find the particular solution

x(t) = x0 · e−at (1 + at).

We see that this differs from the situation in Case A by the factor (1 + at). That
factor of course attenuates the damping, but there is still no oscillatory motion.
We call this the critical case. The graph of our new x(t) is quite similar to the graph
already shown in Fig. 2.2.

Math Note: When a shock absorber begins to wear out, it becomes less effective.
At a certain critical stage its action will be described more accurately by Case B
than by Case A. In physical terms, this will mean that the oscillations of the car
(induced by a road bump, for instance) will be damped out less effectively. The car
will return to true more slowly.

If there is any small decrease in the viscosity, however slight, then the system
will begin to vibrate (as one would expect). That is the next, and last, case that
we examine.

Case C: b2 − a2 < 0 Now 0 < b < a and the damping is less than the force
of the spring. The calculation of r1, r2 entails taking the square root of a negative
number. Thus r1, r2 are the conjugate complex numbers −b ± i

√
a2 − b2. We set

α = √
a2 − b2.

Now the general solution of our system, as we well know, is

x(t) = e−bt (A sin αt + B cos αt).

If we evaluate A, B according to our usual initial conditions, then we find the
particular solution

x(t) = x0

α
e−bt (b sin αt + α cos αt).

It is traditional and convenient to set θ = tan−1(b/α). With this notation,
we can express the last equation in the form

x(t) = x0
√

α2 + b2

α
e−bt cos(αt − θ). (2)

As you can see, there is oscillation because of the presence of the cosine
function. The amplitude (the expression that appears in front of cosine) clearly
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t

x

Fig. 2.3.

falls off—rather rapidly—with t because of the presence of the exponential.
The graph of this function is exhibited in Fig. 2.3.

Of course this function is not periodic—it is dying off, and not repeating itself.
What is true, however, is that the graph crosses the t-axis (the equilibrium position
x = 0) at regular intervals. If we consider this interval T (which is not a “period,”
strictly speaking) as the time required for one complete cycle, then αT = 2π , so

T = 2π

α
= 2π√

k/M − c2/(4M2)
. (3)

We define the number f , which plays the role of “frequency” with respect to the
indicated time interval, to be

f = 1

T
= 1

2π

√
k

M
− c2

4M2
.

This number is commonly called the natural frequency of the system. When the
viscosity vanishes, then our solution clearly reduces to the one we found earlier
when there was no viscosity present. We also see that the frequency of the vibration
is reduced by the presence of damping; increasing the viscosity further reduces
the frequency.

Math Note: When the shock absorbers on your car are really shot, then the motion
of the car after striking a bump will resemble that shown in Fig. 2.3. The harmonic
motion begun by the bump will die out—but rather slowly. The result is discomfort
for the passengers.
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2.5.3 FORCED VIBRATIONS
The vibrations that we have considered so far are called free vibrations because
all the forces acting on the system are internal to the system itself. We now con-
sider the situation in which there is an external force Fe = f (t) acting on the
system. This force could be an external magnetic field (acting on the steel cart) or
vibration of the wall, or perhaps a stiff wind blowing. Again setting mass times
acceleration equal to the resultant of all the forces acting on the system, we have

M · d2x

dt2
= Fs + Fd + Fe.

Taking into account the definitions of the various forces, we may write the
differential equation as

M
d2x

dt2
+ c

dx

dt
+ kx = f (t).

So we see that the equation describing the physical system is second-order lin-
ear, and that the external force gives rise to an inhomogeneous term on the right.
An interesting special case occurs when f (t) = F0 · cos ωt , in other words when
that external force is periodic. Thus our equation becomes

M
d2x

dt2
+ c

dx

dt
+ kx = F0 · cos ωt. (4)

If we can find a particular solution of this equation, then we can combine it with the
information about the solution of the associated homogeneous equation in the last
subsection and then come up with the general solution of the differential equation.
We will use the method of undetermined coefficients. Considering the form of the
right-hand side, our guess will be

x(t) = α sin ωt + β cos ωt.

Substituting this guess into the differential equation gives

M
d2

dt2
[α sin ωt + β cos ωt] + c

d

dt
[α sin ωt + β cos ωt]

+ k[α sin ωt + β cos ωt] = F0 · cos ωt.

With a little calculus and a little algebra we are led to the algebraic equations

ωcα + (k − ω2M)β = F0

(k − ω2M)α − ωcβ = 0.
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We solve for α and β to obtain

α = ωcF0

(k − ω2M)2 + ω2c2
and β = (k − ω2M)F0

(k − ω2M)2 + ω2c2
.

Thus we have found the particular solution

x0(t) = F0

(k − ω2M)2 + ω2c2

[
ωc sin ωt + (k − ω2M) cos ωt

]
.

We may write this in a more useful form with the notation φ = tan−1[ωc/(k −
ω2M)]. Thus

x0(t) = F0√
(k − ω2M)2 + ω2c2

· cos(ωt − φ). (5)

If we assume that we are dealing with the underdamped system, which is Case C
of the last subsection, we find that the general solution of our differential equation
with periodic external forcing term is

x(t) = e−bt (A cos αt + B sin αt)

+ F0√
(k − ω2M)2 + ω2c2

· cos(ωt − φ).

We see that, as long as some damping is present in the system (that is, b is
nonzero and positive), then the first term in the definition of x(t) is clearly transient
(i.e., it dies as t → ∞ because of the exponential term). Thus, as time goes on, the
motion assumes the character of the second term in x(t), which is the steady-state
term. So we can say that, for large t , the physical nature of the general solution to
our system is more or less like that of the particular solution x0(t) that we found.
The frequency of this forced vibration equals the impressed frequency (originating
with the external forcing term) ω/2π . The amplitude is the coefficient

F0√
(k − ω2M)2 + ω2c2

. (6)

This expression for the amplitude depends on all the relevant physical con-
stants, and it is enlightening to analyze it a bit. Observe, for instance, that if the
viscosity c is very small and if ω is close to

√
k/M (so that k −ω2M is very small),

then the motion is lightly damped and the external (impressed) frequency ω/2π is
close to the natural frequency

1

2π

√
k

M
− c2

4M2
,
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and the amplitude is very large (because we are dividing by a number close to 0).
This phenomenon is known as resonance.

Math Note: There are classical examples of resonance. For instance, several
years ago there was a celebration of the anniversary of the Golden Gate Bridge
(built in 1937), and many thousands of people marched in unison across the bridge.
The frequency of their footfalls was so close to the natural frequency of the bridge
(thought of as a suspended string under tension) that the bridge nearly fell apart.

2.5.4 A FEW REMARKS ABOUT ELECTRICITY
It is known that if a periodic electromotive force, E = E0, acts in a simple circuit
containing a resistor, an inductor, and a capacitor, then the charge Q on the capacitor
is governed by the differential equation

L
d2Q

dt2
+ R

dQ

dt
+ 1

C
Q = E0 cos ωt.

This equation is of course quite similar to the equation (4) for the oscillating cart
with external force. In particular, the following correspondences (or analogies) are
suggested:

Mass M ↔ Inductance L

Viscosity c ↔ Resistance R

Stiffness of spring k ↔ Reciprocal of capacitance
1

C

Displacement x ↔ Charge Q on capacitor.

The analogy between the mechanical and electrical systems renders identical the
mathematical analysis of the two systems, and enables us to carry over at once all
mathematical conclusions from the first to the second. In the given electric circuit
we therefore have a critical resistance below which the free behavior of the circuit
will be vibratory with a certain natural frequency, a forced steady-state vibration
of the charge Q, and resonance phenomena that appear when the circumstances
are favorable.
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2.6 Newton’s Law of Gravitation and
Kepler’s Laws

Newton’s Law of Universal Gravitation is one of the great ideas of modern physics.
It underlies so many important physical phenomena that it is part of the bedrock
of science. In this section we show how Kepler’s laws of planetary motion can
be derived from Newton’s gravitation law. It might be noted that Johannes Kepler
himself (1571–1630) used thousands of astronomical observations (made by Tycho
Brahe, 1546–1601) in order to formulate his laws. Both Brahe and Kepler were
followers of Copernicus, who postulated that the planets orbited about the sun
(rather than the traditional notion that the Earth was the center of the orbits); but
Copernicus believed that the orbits were circles. Newton determined how to derive
the laws of motion analytically, and he was able to prove that the orbits must
be ellipses. Furthermore, the eccentricity of an elliptical orbit has an important
physical interpretation. The present section explores all these ideas.

Kepler’s laws of planetary motion
I. The orbit of each planet is an ellipse with the sun at one focus (Fig. 2.4).

II. The segment from the center of the sun to the center of an orbiting planet
sweeps out area at a constant rate (Fig. 2.5).

III. The square of the period of revolution of a planet is proportional to the
cube of the length of the major axis of its elliptical orbit, with the same
constant of proportionality for any planet (Fig. 2.6).

It turns out that the eccentricities of the ellipses that arise in the orbits of the
planets are very small, so that the orbits are nearly circles, but they are definitely
not circles. That is the importance of Kepler’s First Law.

The second law tells us that when the planet is at its apogee (furthest from the
sun), then it is traveling relatively slowly whereas at its perigee (nearest point to
the sun), it is traveling relatively rapidly—Fig. 2.7.

The third law allows us to calculate the length of a year on any given planet from
knowledge of the shape of its orbit.

In this section we shall learn how to derive Kepler’s three laws from Newton’s
inverse square law of gravitational attraction. To keep matters as simple as possible,
we shall assume that our solar system contains a fixed sun and just one planet (the
Earth for instance). The problem of analyzing the gravitation influence of three or
more planets on each other is incredibly complicated and is still not thoroughly
understood.

The argument that we present is due to S. Kochen and is used with his permission.
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sun

earth

Fig. 2.4.

Fig. 2.5.
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sun

earth major axis

Fig. 2.6.

Fig. 2.7.
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2.6.1 KEPLER’S SECOND LAW
It is convenient to derive the second law first. We use a polar coordinate system
with the origin at the center of the sun. We analyze a single planet which orbits the
sun, and we denote the position of that planet at time t by R(t). The only physical
facts that we shall use in this portion of the argument are Newton’s second law and
the self-evident assertion that the gravitational force exerted by the sun on a planet
is a vector parallel to R(t). See Fig. 2.8.

If F is force, m is the mass of the planet (Earth), and a is its acceleration, then
Newton’s Second Law says that

F = ma = mR′′(t).

We conclude that R(t) is parallel to R′′(t) for every value of t .
Now

d

dt

(R(t) × R′(t)
) = [R′(t) × R′(t)

]+ [R(t) × R′′(t)
]
.

Note that the first of these terms is zero because the cross product of any vector
with itself is zero. The second is zero because R(t) is parallel with R′′(t) for
every t. We conclude that

R(t) × R′(t) = C, (1)

sun

earth

R(t)

Fig. 2.8.
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sun

earth
R

A

Fig. 2.9.

where C is a constant vector. Notice that this already guarantees that R(t) and
R′(t) always lie in the same plane, hence that the orbit takes place in a plane.

Now let �t be an increment of time, �R the corresponding increment of
position, and �A the increment of area swept out. Look at Fig. 2.9.

We see that �A is approximately equal to half the area of the parallelogram
determined by the vectors R and �R. The area of this parallelogram is ‖R×�R‖.
Thus

�A

�t
≈ 1

2

‖R × �R‖
�t

= 1

2

∥∥∥∥R × �R
�t

∥∥∥∥.
Letting �t → 0 gives

dA

dt
= 1

2

∥∥∥∥R × dR
dt

∥∥∥∥ = 1

2
‖C‖ = constant.

We conclude that area A(t) is swept out at a constant rate. That is Kepler’s
Second Law.
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2.6.2 KEPLER’S FIRST LAW
Now we write R(t) = r(t)u(t), where u is a unit vector pointing in the same
direction as R and r is a positive, scalar-valued function representing the length of
R. We use Newton’s Inverse Square Law for the attraction of two bodies. If one
body (the sun) has mass M and the other (the planet) has mass m, then Newton
says that the force exerted by gravity on the planet is

−GmM

r2
u.

Here G is a universal gravitational constant. Refer to Fig. 2.10. Because this
force is also equal to mR′′ (by Newton’s Second Law), we conclude that

R′′ = −GM

r2
u.

Also

R′(t) = d

dt
(ru) = r ′u + ru′

and

0 = d

dt
1 = d

dt
(u · u) = 2u · u′.

Therefore

u ⊥ u′. (2)

GmM
r 2

u

Fig. 2.10.
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Now, using (1), we calculate

R′′ × C = R′′ × (R × R′(t))

= −GM

r2
u × (

ru × (r ′u + ru′)
)

= −GM

r2
u × (ru × ru′)

= −GM
[
u × (u × u′)

]
.

We can determine the vector u×(u×u′). For, using (2), we see that u and u′ are
perpendicular and that u×u′ is perpendicular to both of these. Because u×(u×u′)
is perpendicular to the first and last of these three, it must therefore be parallel to u′.
It also has the same length as u′ and, by the right hand rule, points in the opposite
direction. Look at Fig. 2.11. We conclude that u × (u × u′) = −u′, hence that

R′′ × C = GMu′.

If we antidifferentiate this last equality we obtain

R′(t) × C = GM(u + K),

where K is a constant vector of integration.
Thus we have

R · (R′(t) × C) = ru(t) · GM(u(t) + K) = GMr(1 + u(t) · K),

u

u

u u

u u u ))

Fig. 2.11.
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because u(t) is a unit vector. If θ(t) is the angle between u(t) and K, then we may
rewrite our equality as

R · (R′ × C) = GMr(1 + ‖K‖ cos θ).

By a standard triple product formula,

R · (R′(t) × C) = (R × R′(t)) · C,

which in turn equals

C · C = ‖C‖2.

[Here we have used the fact, which we derived in the proof of Kepler’s Second
Law, that R × R′ = C.]

Thus

‖C‖2 = GMr(1 + ‖K‖ cos θ).

[Notice that this equation can be true only if ‖K‖ ≤ 1. This fact will come up again
below.]

We conclude that

r = ‖C‖2

GM
·
(

1

1 + ‖K‖ cos θ

)
.

This is the polar equation for an ellipse of eccentricity ‖K‖. [Exercise 11 will say
a bit more about the such polar equations.]

We have verified Kepler’s First Law.

2.6.3 KEPLER’S THIRD LAW
Look at Fig. 2.12. The length 2a of the major axis of our elliptical orbit is equal
to the maximum value of r plus the minimum value of r. From the equation for
the ellipse we see that these occur respectively when cos θ is +1 and when cos θ

is −1. Thus

2a = ‖C‖2

GM

1

1 − ‖K‖ + ‖C‖2

GM

1

1 + ‖K‖ = 2‖C‖2

GM(1 − ‖K‖2)
.

We conclude that

‖C‖ =
[
aGM(1 − ‖K‖2)

]1/2
. (3)
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2a

maximum value of r

minimum value of r

Fig. 2.12.

Now recall from our proof of the Second Law that

dA

dt
= 1

2
‖C‖.

Then, by antidifferentiating, we find that

A(t) = 1

2
‖C‖t.

(There is no constant term since A(0) = 0.) Let A denote the total area inside the
elliptical orbit and T the time it takes to sweep out one orbit. Then

A = A(T ) = 1

2
‖C‖T .

Solving for T we obtain

T = 2A
‖C‖ .
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But the area inside an ellipse with major axis 2a and minor axis 2b is

A = πab = πa2(1 − e2)1/2,

where e is the eccentricity of the ellipse. This equals πa2(1−‖K‖2)1/2 by Kepler’s
First Law. Therefore

T = 2πa2(1 − ‖K‖2)1/2

‖C‖ .

Finally, we may substitute (3) into this last equation to obtain

T = 2πa3/2

(GM)1/2

or

T 2

a3
= 4π2

GM
.

This is Kepler’s Third Law.

e.g. EXAMPLE 2.12
The planet Uranus describes an elliptical orbit about the sun. It is known that the
semi-major axis of this orbit has length 2870×106 kilometers. The gravitational
constant is G = 6.637 × 10−8 cm3/(g · sec2). Finally, the mass of the sun is
2 × 1033 grams. Determine the period of the orbit of Uranus.

SOLUTION
Refer to the explicit formulation of Kepler’s Third Law that we proved above.
We have

T 2

a3
= 4π2

GM
.

We must be careful to use consistent units. The gravitational constant G is
given in terms of grams, centimeters, and seconds. The mass of the sun is
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in grams. We convert the semi-major axis to centimeters: a = 2870 × 1011 cm
= 2.87 × 1014 cm. Then we calculate that

T =
(

4π2

GM
· a3

)1/2

=
(

4π2

(6.637 × 10−8)(2 × 1033)
· (2.87 × 1014)3

)1/2

≈ [70.308 × 1017]1/2 sec

= 26.516 × 108 sec.

Notice how the units mesh perfectly so that our answer is in seconds. There are
3.16 × 107 seconds in an Earth year. We divide by this number to find that the
time of one orbit is

T ≈ 83.9 Earth years.

Math Note: Kepler elicited his three laws of planetary motion by studying reams
of observational data that had been compiled by his teacher Tycho Brahe. It was
a revelation, and a virtuoso application of the analytical arts, when Newton deter-
mined how to derive the three laws logically from the universal law of gravitation.
Newton himself attached little significance to the feat. He in fact lost his notes
and forgot about the whole matter. It was only years later, when his friend Edmund
Halley dragged the information out of him, that Newton went back to first principles
and reconstructed the arguments so that he could share them with his colleagues.

2.7 Higher-Order Linear Equations,
Coupled Harmonic Oscillators

We treat here some aspects of higher-order equations that bear a similarity to what
we learned about second-order examples. We shall concentrate primarily on linear
equations with constant coefficients. As usual, we illustrate the ideas with a few
key examples.

Math Note: One of the pleasant features of the linear theory of ordinary dif-
ferential equations is that the higher-order theory very strongly resembles the
second-order theory. Such is not the case for nonlinear equations. In that context
there is much less coherence of the ideas.
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We consider an equation of the form

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = f. (1)

Here a superscript (j) denotes a j th derivative and f is some continuous function.
This is a linear, ordinary differential equation of order n.

Following what we learned about second-order equations, we expect the general
solution of (1) to have the form

y = yp + yg,

where yp is a particular solution of (1) and yg is the general solution of the associated
homogeneous equation

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0. (2)

Furthermore, we expect that yg will have the form

yg = A1y1 + A2y2 + · · · + An−1yn−1 + Anyn,

where the yj are “independent” solutions of (2).
We begin by studying the homogeneous equation (2) and seeking the general

solution yg . Again following the paradigm that we developed for second-order
equations, we guess a solution of the form y = erx . Substituting this guess into
(2), we find that

erx ·
[
rn + an−1r

n−1 + · · · + a1r + a0

]
= 0.

Thus we are led to solving the associated polynomial

rn + an−1r
n−1 + · · · + a1r + a0 = 0.

The fundamental theorem of algebra tells us that every polynomial of degree n

has a total of n complex roots r1, r2, . . . , rn (there may be repetitions in this list).
Thus the polynomial factors are

(r − r1) · (r − r2) · · · (r − rn−1) · (r − rn).

In practice there may be some difficulty in actually finding the complete set of
roots of a given polynomial. For instance, it is known that for polynomials of
degree 5 and greater there is no elementary formula for the roots. Let us pass over
this sticky point for the moment, and continue to comment on the theoretical setup.
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I. Distinct Real Roots: For a given associated polynomial, if the roots
r1, r2, . . . , rn are distinct and real, then we can be sure that

er1x, er2x, . . . , ernx

are n distinct solutions to the differential equation (2). It then follows, just as in the
second-order case, that

yg = A1e
r1x + A2e

r2x + · · · + Ane
rnx

is the general solution to (2) that we seek.

II. Repeated Real Roots: If the roots are real, but two of them are equal (say that
r1 = r2), then of course er1x and er2x are not distinct solutions of the differential
equation. Just as in the case of second-order equations, what we do in this case is
manufacture two distinct solutions of the form er1x and x · er1x .

More generally, if several of the roots are equal, say r1 = r2 = · · · = rk , then we
manufacture distinct solutions of the form er1x, x · er1x, x2 · er1x, . . . , xk−1 · er1x .

III. Complex Roots: We have been assuming that the coefficients of the original
differential equation ((1) or (2)) are all real. This being the case, any complex roots
of the associated polynomial will occur in conjugate pairs a + ib and a − ib. Then
we have distinct solutions e(a+ib)x and e(a−ib)x . Now we can use Euler’s formula
and a little algebra, just as we did in the second-order case, to produce distinct real
solutions eax cos bx and eax sin bx.

In the case that complex roots are repeated to order k, then we take

eax cos bx, xeax cos bx, . . . , xk−1eax cos bx

and

eax sin bx, xeax sin bx, . . . , xk−1eax sin bx

as solutions of the ordinary differential equation.

e.g.EXAMPLE 2.13
Find the general solution of the differential equation

y(4) − 5y(2) + 4y = 0.

SOLUTION
The associated polynomial is

r4 − 5r2 + 4 = 0.
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Of course we may factor this as (r2 − 4)(r2 − 1) = 0 and then as

(r − 2)(r + 2)(r − 1)(r + 1) = 0.

We find, therefore, that the general solution of our differential equation is

y(x) = A1e
2x + A2e

−2x + A3e
x + A4e

−x.

e.g. EXAMPLE 2.14
Find the general solution of the differential equation

y(4) − 8y(2) + 16y = 0.

SOLUTION
The associated polynomial is

r4 − 8r2 + 16 = 0.

This factors readily as (r2 − 4)(r2 − 4) = 0, and then as

(r − 2)2(r + 2)2 = 0.

According to our discussion in Part II, the general solution of the differential
equation is then

y(x) = A1e
2x + A2xe2x + A3e

−2x + A4xe−2x.

e.g. EXAMPLE 2.15
Find the general solution of the differential equation

d4y

dx4
− 2

d3y

dx3
+ 2

d2y

dx2
− 2

dy

dx
+ y = 0.

SOLUTION
The associated polynomial is

r4 − 2r3 + 2r2 − 2r + 1 = 0.

We notice, just by inspection, that r1 = 1 is a solution of this polynomial
equation. Thus r − 1 divides the polynomial. In fact

r4 − 2r3 + 2r2 − 2r + 1 = (r − 1) · (r3 − r2 + r − 1).

But we again see that r2 = 1 is a root of the new third-degree polynomial.
Dividing out r − 1 again, we obtain a quadratic polynomial that we can solve
directly.
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The end result is

r4 − 2r3 + 2r2 − 2r + 1 = (r − 1)2 · (r2 + 1) = 0

or

(r − 1)2(r − i)(r + i) = 0.

As a result, we find that the general solution of the differential equation is

y(x) = A1e
x + A2xex + A3 cos x + A4 sin x.

e.g.EXAMPLE 2.16
Find the general solution of the equation

y(4) − 5y(2) + 4y = sin x. (3)

SOLUTION
In fact we found the general solution of the associated homogeneous equation
in Example 2.13. To find a particular solution of (3), we use undetermined
coefficients and guess a solution of the form y = α cos x + β sin x. A little
calculation reveals then that yp(x) = (1/10) sin x is the particular solution that
we seek. As a result,

y(x) = 1

10
sin x + A1e

2x + A2e
−2x + A3e

x + A4e
−x

is the general solution of (3).

You Try It: Find the general solution of the differential equation

d4y

dx4
+ 2

d3y

dx3
− 13

d2y

dx2
− 14

dy

dx
+ 24y = 0.

[Hint: The associated polynomial is r4 + 2r3 − 13r2 − 14r + 24 = 0. The rational
roots of this polynomial will be factors of the constant term 24.]

e.g.EXAMPLE 2.17 (Coupled Harmonic Oscillators)
Linear equations of order greater than two arise in physics by the elimination of
variables from simultaneous systems of second-order equations. We give here an
example that arises from coupled harmonic oscillators. Accordingly, let two carts of
masses m1, m2 be attached to left and right walls as in Fig. 2.13 with springs having
spring constants k1, k2. If there is no damping and the the carts are unattached, then
of course when the carts are perturbed we have two separate harmonic oscillators.

But if we connect the carts, with a spring having spring constant k3, then
we obtain coupled harmonic oscillators. In fact Newton’s second law of motion
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Fig. 2.13.

can now be used to show that the motions of the coupled carts will satisfy these
differential equations:

m1
d2x1

dt2
= −k1x1 + k3(x2 − x1),

m2
d2x2

dt2
= −k2x2 − k3(x2 − x1).

We can solve the first equation for x2,

x2 = 1

k3

(
x1[k1 + k3] + m1

d2x1

dt2

)
,

and then substitute into the second equation. The result is a fourth-order equation
for x1.

Exercises
1. Find the general solution of each of the following differential equations:

(a) y′′ + y′ − 6y = 0
(b) y′′ + 2y′ + y = 0

2. Find the solution of each of the following initial value problems:
(a) y′′ − 5y′ + 6y = 0, y(1) = e2 and y′(1) = 3e2

(b) y′′ − 6y′ + 5y = 0, y(0) = 3 and y′(0) = 11

3. Find the differential equation of each of the following general solution
sets:
(a) Aex + Be−2x

(b) A + Be2x
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4. Use the method of variation of parameters to find the general solution of
each of the following equations:
(a) y′′ + 3y′ − 10y = 6e4x

(b) y′′ + 4y = 3 sin x

5. Find a particular solution of each of the following differential equations:
(a) y′′ − 3y = x − x2

(b) y′′ + 2y′ + 5y = xe−x

6. Find the general solution of each of the following equations:
(a) (x2 − 1)y′′ − 2xy′ + 2y = x2 + 1

(b) (x2 + x)y′′ + (2x + 1)y′ − 2x + 1

x
· y = −4x2 − 3x

7. The equation xy′′ + 3y′ = 0 has the obvious solution y1 ≡ 1. Find y2
and find the general solution.

8. Verify that y1 = x2 is one solution of x2y′′ + xy′ − 4y = 0, and then
find y2 and the general solution.

9. Find the general solution of the differential equation:
(a) y′′ + 2y′ + 4y = 0
(b) y′′ − 3y′ + 6y = x

10. In each problem, find the general solution of the given differential
equation:
(a) y′′′ − 3y′′ + 2y′ = x

(b) y′′′ − 3y′′ + 4y′ − 2y = 0

11. The planet Zulu describes an elliptical orbit about the sun. It is known
that the semi-major axis of this orbit has length 1200 × 106 kilometers.
The gravitational constant is G = 6.637 × 10−8 cm3/(g · sec2). Finally,
the mass of the sun is 2 × 1033 grams. Determine the period of the orbit
of Zulu.
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CHAPTER

Power Series
Solutions and
Special Functions

3.1 Introduction and Review of Power Series
It is useful to classify the functions that we know, or will soon know, in an informal
way. The polynomials are functions of the form

a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n,

where a0, a1, . . . , an are constants. This is a polynomial of degree n.
A transcendental function is one that is not a polynomial. The elemen-

tary transcendental functions are the ones that we encounter in calculus class:
sine, cosine, logarithm, exponential, and their inverses and combinations using
arithmetic/algebraic operations.
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The higher transcendental functions are ones that are defined using power
series. These often arise as solutions of differential equations. These functions
are a bit difficult to understand, just because they are not given by elementary
formulas. But they are frequently very important because they come from funda-
mental problems of mathematical physics. As an example, solutions of Bessel’s
equation, which we shall see in detail in Section 6.3, are called Bessel functions
and are studied intensively (see [WAT]).

Higher transcendental functions are frequently termed special functions. These
functions were studied extensively in the eighteenth and nineteenth centuries—
by Gauss, Euler, Abel, Jacobi, Weierstrass, Riemann, L’Hermite, Poincaré, and
other leading mathematicians of the day. Although many of the functions that they
studied were quite recondite, and are no longer of much interest today, others (such
as the Riemann zeta function, the gamma function, and elliptic functions) are still
intensively studied.

In the present chapter we shall learn to solve differential equations using the
method of power series, and we shall have a very brief introduction to how special
functions arise from this process. There are many new ideas to learn in this study.
But there are a number of rewards along the way.

3.1.1 REVIEW OF POWER SERIES
We begin our study with a quick review of the key ideas from the theory of power
series.

I. A series of the form

∞∑
j=0

ajx
j = a0 + a1x + a2x

2 + · · · (1)

is called a power series in x. Slightly more general is the series

∞∑
j=0

aj (x − a)j ,

which is a power series in x − a (or expanded about the point a).

II. The series (1) is said to converge at a point x if the limit

lim
k→∞

k∑
j=0

ajx
j
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exists. The value of the limit is called the sum of the series. [This is just the familiar
idea of defining the value of a series to be the limit of its partial sums.]

Obviously (1) converges when x = 0, since all terms but the first (or zeroth)
will then be equal to 0. The following three examples illustrate, in an informal way,
what the convergence properties might be at other values of x.

(a) The series

∞∑
j=0

j ! xj = 1 + x + 2!x2 + 3!x3 + · · ·

diverges at every x �= 0.1 This can be seen by using the ratio test from the
theory of series. It of course converges at x = 0.

(b) The series

∞∑
j=0

xj

j ! = 1 + x + x2

2! + x3

3! + · · ·

converges at every value of x, including x = 0. This can be seen by
applying the ratio test from the theory of series.

(c) The series

∞∑
j=0

xj = 1 + x + x2 + x3 + · · ·

converges when |x| < 1 and diverges when |x| ≥ 1.

These three examples are special instances of a general phenomenon that governs
the convergence behavior of power series. There will always be a number R,
0 ≤ R ≤ ∞, such that the series converges for |x| < R and diverges for |x| > R.
In the first example, R = 0; in the second example, R = +∞; in the third example,
R = 1. We call R the radius of convergence of the power series. The interval
(−R, R) is called the interval of convergence. In practice, we check convergence
at the endpoints of the interval of convergence by hand in each example. We add
those points to the interval of convergence as appropriate. The next three examples
will illustrate how we calculate R in practice.

1Here we use the notation n! = n · (n − 1) · (n − 2) · 3 · 2 · 1. This is called the factorial notation. Observe that,
by convention, 0! = 1. We do not consider factorials of nonintegers, or of negative integers.
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e.g.EXAMPLE 3.1
Calculate the radius of convergence of the series

∞∑
j=0

xj

j2
.

SOLUTION
We apply the ratio test:

lim
j→∞

∣∣∣∣xj+1/(j + 1)2

xj/j2

∣∣∣∣ =
∣∣∣∣ lim
j→∞

j2

(j + 1)2
· x

∣∣∣∣ = |x|.

We know that the series will converge when this limit is less than 1, or |x| < 1.
Likewise, it diverges when |x| > 1. Thus the radius of convergence is R = 1.

In practice, one has to check the endpoints of the interval of convergence by
hand for each case. In this example, we see immediately that the series converges
at ±1. Thus we may say that the interval of convergence is [−1, 1].

e.g.EXAMPLE 3.2
Calculate the radius of convergence of the series

∞∑
j=0

xj

j
.

SOLUTION
We apply the ratio test:

lim
j→∞

∣∣∣∣xj+1/j + 1

xj/j

∣∣∣∣ =
∣∣∣∣ lim
j→∞

j

j + 1
· x

∣∣∣∣ = |x|.

We know that the series will converge when this limit is less than 1, or |x| < 1.
Likewise, it converges when |x| > 1. Thus the radius of convergence is R = 1.

In this example, we see immediately that the series converges at −1 (by the
alternating series test) and diverges at +1 (since this gives the harmonic series).
Thus we may say that the interval of convergence is [−1, 1).

e.g.EXAMPLE 3.3
Calculate the radius of convergence of the series

∞∑
j=0

xj

jj
.
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SOLUTION
We use the root test:

lim
j→∞

∣∣∣∣xj

jj

∣∣∣∣1/j

= lim
j→∞

∣∣∣∣xj
∣∣∣∣ = 0.

Of course 0 < 1, regardless of the value of x. So the series converges for all x.
The radius of convergence is +∞ and the interval of convergence is (−∞, +∞).
There is no need to check the endpoints of the interval of convergence, because
there are none.

☞ You Try It: Calculate the interval of convergence for the power series

∞∑
j=0

x2j

(2j)! .

III. Suppose that our power series (1) converges for |x| < R with R > 0. Denote
its sum by f (x), so

f (x) =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · · .

Thus the power series defines a function, and we may consider differentiating it.
In fact the function f is continuous and has derivatives of all orders. We may calcu-
late the derivatives by differentiating the series termwise:

f ′(x) =
∞∑

j=1

jajx
j−1 = a1 + 2a2x + 3a3x

2 + · · · ,

f ′′(x) =
∞∑

j=2

j (j − 1)xj−2 = 2a2 + 3 · 2a3x
2 + · · · ,

and so forth. Each of these series converges on the same interval |x| < R.
Observe that if we evaluate the first of these formulas at x = 0, then we obtain

the useful fact that

a1 = f ′(0)

1! .

If we evaluate the second formula at x = 0, then we obtain the analogous fact that

a2 = f (2)(0)

2! .
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In general, we can derive (by successive differentiation) the formula

aj = f (j)(0)

j ! , (2)

which gives us an explicit way to determine the coefficients of the power series
expansion of a function. It follows from these considerations that a power series is
identically equal to 0 if and only if each of its coefficients is 0.

We may also note that a power series may be integrated termwise. If

f (x) =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · · ,

then ∫
f (x) dx =

∞∑
j=0

aj

xj+1

j + 1
= a0x + a1

x2

2
+ a2

x3

3
+ · · · .

If

f (x) =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · ·

and

g(x) =
∞∑

j=0

bjx
j = b0 + b1x + b2x

2 + · · ·

for |x| < R, then these functions may be added or subtracted by adding or sub-
tracting the series termwise:

f (x) ± g(x) =
∞∑

j=0

(aj ± bj )x
j = (a0 ± b0) + (a1 ± b1)x + (a2 ± b2)x

2 + · · · .

Also f and g may be multiplied as if they were polynomials, to wit

f (x) · g(x) =
∞∑

j=0

cnx
n,

where

cn = a0bn + a1bn−1 + · · · + anb0.

We shall say more about operations on power series below.
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Finally, we note that if two different power series converge to the same function,
then (2) tells us that the two series are precisely the same (i.e., have the same
coefficients). In particular, if f (x) ≡ 0 for |x| < R, then all the coefficients of the
power series expansion for f are equal to 0.

IV. Suppose that f is a function that has derivatives of all orders on |x| < R.
We may calculate the coefficients

aj = f (j)(0)

j !
and then write the (formal) series

∞∑
j=0

ajx
j . (3)

It is then natural to ask whether the series (3) converges to f . When the func-
tion f is sine or cosine or logarithm or the exponential, then the answer is
“yes.” But these are very special functions. Actually, the answer to our ques-
tion is generically “no.” Most infinitely differentiable functions do not have power
series expansion that converges back to the function. In fact most have power series
that does not converge at all; but even in the unlikely circumstance that the series
does converge, it will most probably not converge to the original f .

This circumstance may seem rather strange, but it explains why mathemati-
cians spent so many years trying to understand power series. The functions that do
have convergent power series are called real analytic and they are very particu-
lar functions with remarkable properties. Even though the subject of real analytic
functions is more than 300 years old, the first and only book written on the subject
is [KRP1].

We do have a way of coming to grips with the unfortunate state of affairs that
has just been described, and that is the theory of Taylor expansions. For a function
with sufficiently many derivatives, here is what is actually true:

f (x) =
n∑

j=0

f (j)(0)

j ! xj + Rn(x), (4)

where the remainder term Rn(x) is given by

Rn(x) = f (n+1)(ξ)

(n + 1)! xn+1

for some number ξ between 0 and x. The power series converges to f precisely
when the partial sums in (4) converge, and that happens precisely when the
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remainder term goes to zero. What is important for you to understand is that,
generically, the remainder term does not go to zero. But formula (4) is still valid.

We can use formula (4) to obtain the familiar power series expansions for
several important functions:

ex =
∞∑

j=0

xj

j ! = 1 + x + x2

2! + x3

3! + · · · ;

sin x =
∞∑

j=0

(−1)j
x2j+1

(2j + 1)! = x − x3

3! + x5

5! − + · · · ;

cos x =
∞∑

j=0

(−1)j
x2j

(2j)! = 1 − x2

2! + x4

4! − + · · · .

Of course there are many others, including the logarithm and the other trigono-
metric functions. Just for practice, let us verify that the first of these formulas is
actually valid.

First,

dj

dxj
ex = ex for every j .

Thus

aj = [dj/dxj ]ex
∣∣
x=0

j ! = 1

j ! .

This confirms that the formal power series for ex is just what we assert it to be. To
check that it converges back to ex , we must look at the remainder term, which is

Rn(x) = f (n+1)(ξ)

(n + 1)! xn+1 = eξ · xn+1

(n + 1)! .

Of course, for x fixed, we have that |ξ | < |x|; also n → ∞ implies that (n+1)! →
∞ much faster than xn+1 → ∞. So the remainder term goes to zero and the series
converges to ex .

Math Note: There are many different techniques for expanding a function into
a series of basic elements. Certainly power series is one of the most important of
these. In Chapter 4 we shall learn about Fourier series, which is another important
methodology. One of several reasons that Fourier series are attractive is that the
Fourier series of a function usually converges, and usually converges back to the
original function.
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V. Operations on Series Some operations on series, such as addition, subtrac-
tion, and scalar multiplication, are straightforward. Others, such as multiplication,
entail subtleties.

Sums and Scalar Products of Series
Given PROPOSITION 3.1

Let

∞∑
j=1

aj and
∞∑

j=1

bj

be convergent series of real or complex numbers; assume that the series sum
to limits α and β respectively. Then

(a) The series
∑∞

j=1(aj + bj ) converges to the limit α + β.

(b) If c is a constant, then the series
∑∞

j=1 c · aj converges to c · α.

Products of Series
In order to keep our discussion of multiplication of series as straightforward as
possible, we deal at first with absolutely convergent series. It is convenient in this
discussion to begin our sum at j = 0 instead of j = 1. If we wish to multiply

∞∑
j=0

aj and
∞∑

j=0

bj ,

then we need to specify what the partial sums of the product series should be.
An obvious necessary condition that we wish to impose is that if the first series
converges to α and the second converges to β, then the product series

∑∞
j=0 cj ,

whatever we define it to be, should converge to α · β.

The Cauchy Product
Cauchy’s idea was that the terms for the product series should be

cm ≡
m∑

j=0

aj · bm−j .

This particular form for the summands can be easily motivated using power series
considerations (which we shall provide later on). For now we concentrate on
confirming that this “Cauchy product” of two series really works.
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GivenTHEOREM 3.1
Let

∑∞
j=0 aj and

∑∞
j=0 bj be two absolutely convergent series which converge

to limits α and β respectively. Define the series
∑∞

m=0 cm with summands

cm =
m∑

j=0

aj · bm−j .

Then the series
∑∞

m=0 cm converges to α · β.

e.g.EXAMPLE 3.4
Consider the Cauchy product of the two conditionally convergent series

∞∑
j=0

(−1)j√
j + 1

and
∞∑

j=0

(−1)j√
j + 1

.

Observe that

cm = (−1)0(−1)m√
1
√

m + 1
+ (−1)1(−1)m−1

√
2
√

m
+ · · ·

+ (−1)m(−1)0

√
m + 1

√
1

=
m∑

j=0

(−1)m
1√

(j + 1) · (m + 1 − j)
.

However,

(j + 1) · (m + 1 − j) ≤ (m + 1) · (m + 1) = (m + 1)2.

Thus

|cm| ≥
m∑

j=0

1

m + 1
= 1.

We thus see that the terms of the series
∑∞

m=0 cm do not tend to zero, so the
series cannot converge.

e.g.EXAMPLE 3.5
The series

A =
∞∑

j=0

2−j and B =
∞∑

j=0

3−j
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are both absolutely convergent. We challenge you to calculate the Cauchy
product and to verify that that product converges to 3.

VI. We conclude by summarizing some properties of real analytic functions:

1. Polynomials and the functions ex , sin x, cos x are all real analytic at all
points.

2. If f and g are real analytic at x0, then f ± g, f · g, and f/g (provided
g(x0) �= 0) are real analytic at x0.

3. If f is real analytic at x0 and if f −1 is a continuous inverse and f ′(x0) �= 0,
then f −1 is real analytic at f (x0).

4. If g is real analytic at x0 and f is real analytic at g(x0), then f ◦ g is real
analytic at x0.

5. The function defined by the sum of a power series is real analytic at all
interior points of its interval of convergence.

3.2 Series Solutions of First-Order
Differential Equations

Now we get our feet wet and use power series to solve first-order linear equations.
This will turn out to be misleadingly straightforward to do, but it will show us the
basic moves.

e.g. EXAMPLE 3.6
Solve the differential equation

y′ = y

using the method of power series.

SOLUTION
Of course we already know that the solution to this equation is y = C · ex ,
but let us pretend that we do not know this. We proceed by guessing that the
equation has a solution given by a power series, and we proceed to solve for the
coefficients of that power series.

So our guess is a solution of the form

y = a0 + a1x + a2x
2 + a3x

3 + · · · .

Then

y′ = a1 + 2a2x + 3a3x
2 + · · ·
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and we may substitute these two expressions into the differential equation. Thus

a1 + 2a2x + 3a3x
2 + · · · = a0 + a1x + a2x

2 + · · · .

Now the powers of x must match up (i.e., the coefficients must be equal).
We conclude that

a1 = a0

2a2 = a1

3a3 = a2

and so forth. Let us take a0 to be an unknown constant C. Then we see that

a1 = C;

a2 = C

2
;

a3 = C

3 · 2
; etc.

In general,

an = C

n! .

In summary, our power series solution of the original differential equation is

y =
∞∑

j=0

C

j !x
j = C ·

∞∑
j=0

xj

j ! = C · ex.

Thus we have a new way, using power series, of discovering the general
solution of the differential equation y′ = y.

The next example illustrates the point that, by running our logic a bit differently,
we can use a differential equation to derive the power series expansion for a given
function.

e.g.EXAMPLE 3.7
Let p be an arbitrary real constant. Use a differential equation to derive the
power series expansion for the function

y = (1 + x)p.
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SOLUTION
Of course the given y is a solution of the initial value problem

(1 + x) · y′ = py , y(0) = 1.

We assume that the equation has a power series solution

y =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · ·

with positive radius of convergence R. Then

y′ =
∞∑

j=1

j · ajx
j−1 = a1 + 2a2x + 3a3x

2 + · · · ;

xy′ =
∞∑

j=1

j · ajx
j = a1x + 2a2x

2 + 3a3x
3 + · · · ;

py =
∞∑

j=0

pajx
j = pa0 + pa1x + pa2x

2 + · · · .

By the differential equation, the sum of the first two of these series equals the
third. Thus

∞∑
j=1

jajx
j−1 +

∞∑
j=1

jajx
j =

∞∑
j=0

pajx
j .

We immediately see two interesting anomalies: the powers of x on the left-hand
side do not match up, so the two series cannot be immediately added. Also the
summations do not all begin in the same place. We address these two concerns
as follows.

First, we can change the index of summation in the first sum on the left to
obtain

∞∑
j=0

(j + 1)aj+1x
j +

∞∑
j=1

jajx
j =

∞∑
j=0

pajx
j .

Write out the first few terms of the sum we have changed, and the original sum,
to see that they are just the same.
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Now every one of our series has xj in it, but they begin at different places.
So we break off the extra terms as follows:

∞∑
j=1

(j + 1)aj+1x
j +

∞∑
j=1

jajx
j −

∞∑
j=1

pajx
j = −a1x

0 − pa0x
0. (1)

Notice that all we have done is to break off the zeroth terms of the first and
third series, and put them on the right.

The three series on the left-hand side of (1) are begging to be put together:
they have the same form, they all involve powers of x, and they all begin at the
same index. Let us do so:

∞∑
j=1

[
(j + 1)aj+1 + jaj − paj

]
xj = −a1 + pa0.

Now the powers of x that appear on the left are 1, 2, …, and there are none of
these on the right. We conclude that each of the coefficients on the left is zero; by
the same reasoning, the coefficient (−a1 + pa0) on the right (i.e., the constant
term) equals zero. So we have the equations2

−a1 + pa0 = 0

(j + 1)aj+1 + (j − p)aj = 0 for j = 1, 2, . . . .

Our initial condition tells us that a0 = 1. Then our first equation implies that
a1 = p. The next equation, with j = 1, says that

2a2 + (1 − p)a1 = 0.

Hence a2 = (p − 1)a1/2 = (p − 1)p/2. Continuing, we take j = 2 in the
second equation to get

3a3 + (2 − p)a2 = 0

so a3 = (p − 2)a2/3 = (p − 2)(p − 1)p/(3 · 2).
We may continue in this manner to obtain that

aj = p(p − 1)(p − 2) · · · (p − j + 1)

j ! .

2A set of equations like this is called a recursion. It expresses later indexed aj ’s in terms of earlier indexed aj ’s.
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Thus the power series expansion for our solution y is

y = 1 + px + p(p − 1)

2! x + p(p − 1)(p − 2)

3! + · · ·

+ p(p − 1)(p − 2) · · · (p − j + 1)

j ! xj + · · · .

Since we knew in advance that the solution of our initial value problem was

y = (1 + x)p,

we find that we have derived Isaac Newton’s general binomial theorem (or
binomial series):

(1 + x)p = 1 + px + p(p − 1)

2! x + p(p − 1)(p − 2)

3! + · · ·

+ p(p − 1)(p − 2) · · · (p − j + 1)

j ! xj + · · · .

☞ You Try It: Use power series methods to solve the differential equation

y′ = xy.

Math Note: It is tempting to use the power series method to attack virtually
any differential equation that we encounter. But the method only works when the
coefficients of the differential equation are themselves real analytic. And it works
best for linear equations.

3.3 Second-Order Linear Equations:
Ordinary Points

We have invested considerable effort in studying equations of the form

y′′ + p · y′ + q · y = 0. (1)

In some sense, our investigations thus far have been misleading; for we have
only considered particular equations in which a closed-form solution can be found.
These cases are really the exception rather than the rule. For most such equations,
there is no “formula” for the solution. Power series then give us some extra flexi-
bility. Now we may seek a power series solution; that solution is valid, and may
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be calculated and used in applications, even though it may not be expressed in
a compact formula.

A number of the differential equations that arise in mathematical physics—
Bessel’s equation, Lagrange’s equation, and many others—in fact fit the description
that we have just presented. So it is worthwhile to develop techniques for studying
(1). In the present section we shall concentrate on finding a power series solution
to the equation (1)—written in standard form—expanded about a point x0, where
x0 has the property that p and q have convergent power series expansions about
x0. In this circumstance we call x0 an ordinary point of the differential equation.

We begin our study with a familiar equation, just to see the basic steps, and
how the solution will play out.

e.g.EXAMPLE 3.8
Solve the differential equation

y′′ + y = 0

by power series methods.

SOLUTION
As usual, we guess a solution of the form

y =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · · .

Of course it follows that

y′ =
∞∑

j=1

jajx
j−1 = a1 + 2a2x + 3a3x

2 + · · ·

and

y′′ =
∞∑

j=2

j (j − 1)ajx
j−2 = 2 · 1 · a2 + 3 · 2 · 1 · a3x + 4 · 3 · 2 · 1 · x2 · · · .

Plugging the first and third of these into the differential equation gives

∞∑
j=2

j (j − 1)ajx
j−2 +

∞∑
j=0

ajx
j = 0.

As in the last example of Section 3.2, we find that the series have x raised to
different powers, and that the summation begins in different places. We follow
the standard procedure for repairing these matters.
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First, we change the index of summation in the second series. So

∞∑
j=2

j (j − 1)ajx
j−2 +

∞∑
j=2

aj−2x
j−2 = 0.

We invite you to verify that the new second series is just the same as the original
second series (merely write out a few terms of each to check). We are fortunate
in that both series now begin at the same index. So we may add them together
to obtain

∞∑
j=2

[
j (j − 1)aj + aj−2

]
xj−2 = 0.

The only way that such a power series can be identically zero is if each of the
coefficients is zero. So we obtain the recursion equations

j (j − 1)aj + aj−2 = 0 , j = 2, 3, 4, . . . .

Then j = 2 gives us

a2 = − a0

2 · 1
.

It will be convenient to take a0 to be an arbitrary constant A, so that

a2 = − A

2 · 1
.

The recursion for j = 4 says that

a4 = − a2

4 · 3
= A

4 · 3 · 2 · 1
.

Continuing in this manner, we find that

a2j = (−1)j · A

2j · (2j − 1) · (2j − 2) · · · 3 · 2 · 1

= (−1)j · A

(2j)! , j = 1, 2, . . . .

Thus we have complete information about the coefficients with even index.
Now let us consider the odd indices. Look at the recursion for j = 3. This is

a3 = − a1

3 · 2
.
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It is convenient to take a1 to be an arbitrary constant B. Thus

a3 = − B

3 · 2 · 1
.

Continuing with j = 5, we find that

a5 = − a3

5 · 4
= B

5 · 4 · 3 · 2 · 1
.

In general,

a2j+1 = (−1)j
B

(2j + 1)! , j = 1, 2, . . . .

In summary then, the general solution of our differential equation is given by

y = A ·
⎛⎝ ∞∑

j=0

(−1)j · A

(2j)!x
2j

⎞⎠+ B ·
⎛⎝ ∞∑

j=0

(−1)j
B

(2j + 1)!x
2j+1

⎞⎠ .

Of course we recognize the first power series as the cosine function and the
second as the sine function. So we have rediscovered that the general solution
of y′′ + y = 0 is

y = A · cos x + B · sin x.

e.g.EXAMPLE 3.9
Use the method of power series to solve the differential equation

(1 − x2)y′′ − 2xy′ + p(p + 1)y = 0. (2)

Here p is an arbitrary real constant. This is called Legendre’s equation.

SOLUTION
First we write the equation in standard form:

y′′ − 2x

1 − x2
y′ + p(p + 1)

1 − x2
= 0.

Observe that, near x = 0, division by 0 is avoided and the coefficients p and q

are real analytic. So 0 is an ordinary point.
We therefore guess a solution of the form

y =
∞∑

j=0

ajx
j = a0 + a1x + a2x

2 + · · ·
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and calculate

y′ =
∞∑

j=1

jajx
j−1 = a1 + 2a2x + 3a3x

2 + · · ·

and

y′′ =
∞∑

j=2

j (j − 1)ajx
j−2 = 2a2 + 3 · 2 · a3x + · · · .

It is most convenient to treat the differential equation in the form (2). We
calculate

−x2y′′ = −
∞∑

j=2

j (j − 1)ajx
j

and

−2xy′ = −
∞∑

j=1

2jajx
j .

Substituting into the differential equation now yields

∞∑
j=2

j (j − 1)ajx
j−2 −

∞∑
j=2

j (j − 1)ajx
j

−
∞∑

j=1

2jajx
j + p(p + 1)

∞∑
j=0

ajx
j = 0.

We adjust the index of summation in the first sum so that it contains xj rather
than xj−2 and we break off spare terms and collect them on the right. The
result is

∞∑
j=2

(j + 2)(j + 1)aj+2x
j −

∞∑
j=2

j (j − 1)ajx
j

−
∞∑

j=2

2jajx
j + p(p + 1)

∞∑
j=2

ajx
j

= −2a2 − 6a3x + 2a1x − p(p + 1)a0 − p(p + 1)a1x.
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In other words,

∞∑
j=2

[
(j + 2)(j + 1)aj+2 − j (j − 1)aj − 2jaj + p(p + 1)aj

]
xj

= −2a2 − 6a3x + 2a1x − p(p + 1)a0 − p(p + 1)a1x.

As a result,[
(j + 2)(j + 1)aj+2 − j (j − 1)aj − 2jaj + p(p + 1)aj

] = 0,

for j = 2, 3, . . .

together with

−2a2 − p(p + 1)a0 = 0

and

−6a3 + 2a1 − p(p + 1)a1 = 0.

We have arrived at the recursion

a2 = −p(p + 1)

1 · 2
· a0,

a3 = −(p − 1)(p + 2)

2 · 3
· a1,

aj+2 = −(p − j)(p + j + 1)

(j + 2)(j + 1)
· aj for j = 2, 3, . . . . (3)

We recognize a familiar pattern: The coefficients a0 and a1 are unspecified,
so we set a0 = A and a1 = B. Then we may proceed to solve for the rest of the
coefficients. Now

a2 = −p(p + 1)

2
· A,

a3 = −(p − 1)(p + 2)

2 · 3
· B,

a4 = −(p − 2)(p + 3)

3 · 4
a2 = p(p − 2)(p + 1)(p + 3)

4! · A,

a5 = −(p − 3)(p + 4)

4 · 5
a3 = (p − 1)(p − 3)(p + 2)(p + 4)

5! · B,
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a6 = −(p − 4)(p + 5)

5 · 6
a4

= −p(p − 2)(p − 4)(p + 1)(p + 3)(p + 5)

6! · A,

a7 = −(p − 5)(p + 6)

6 · 7
a5

= −(p − 1)(p − 3)(p − 5)(p + 2)(p + 4)(p + 6)

7! · B,

and so forth. Putting these coefficient values into our supposed power series
solution we find that the general solution of our differential equation is

y = A

[
1 − p(p + 1)

2! x2 + p(p − 2)(p + 1)(p + 3)

4! x4

− p(p − 2)(p − 4)(p + 1)(p + 3)(p + 5)

6! x6 + − · · ·
]

+ B

[
x − (p − 1)(p + 2)

3! x3 + (p − 1)(p − 3)(p + 2)(p + 4)

5! x5

− (p − 1)(p − 3)(p − 5)(p + 2)(p + 4)(p + 6)

7! x7 + − · · ·
]
.

We assure you that, when p is not an integer, then these are not familiar ele-
mentary transcendental functions. These are what we call Legendre functions.
In the special circumstance that p is a positive even integer, the first function
(that which is multiplied by A) terminates as a polynomial. In the special cir-
cumstance that p is a positive odd integer, the second function (that which is
multiplied by B) terminates as a polynomial. These are called Legendre polyno-
mials, and they play an important role in mathematical physics, representation
theory, and interpolation theory.

☞ You Try It: Use power series methods to solve the differential equation

y′′ + xy = 0.

Math Note: It is actually possible, without much effort, to check the radius of
convergence of the functions we discovered as solutions in the last example. In fact
we use the recursion relation (3) to see that∣∣∣∣∣a2j+2x

2j+2

a2j x2j

∣∣∣∣∣ =
∣∣∣∣−(p − 2j)(p + 2j + 1)

(2j + 1)(2j + 2)

∣∣∣∣ · |x|2 → |x|2
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as j → ∞. Thus the series expansion of the first Legendre function converges
when |x| < 1, so the radius of convergence is 1. A similar calculation shows that
the radius of convergence for the second Legendre function is 1.

We now enunciate a general result about the power series solution of an ordinary
differential equation at an ordinary point.

GivenTHEOREM 3.2
Let x0 be an ordinary point of the differential equation

y′′ + p · y′ + q · y = 0, (4)

and let α and β be arbitrary real constants. Then there exists a unique real
analytic function y = y(x) that has a power series expansion about x0 and
so that

(a) The function y solves the differential equation (4).
(b) The function y satisfies the initial conditions y(x0) = α, y′(x0) = β.

If the functions p and q have power series expansions about x0 with radius of
convergence R, then so does y.

We conclude the section with this remark. The examples that we have worked
in detail resulted in solutions with two-term (or binary) recursion formulas: a2 was
expressed in terms of a0 and a3 was expressed in terms of a1, etc.. In general,
the recursion formulas that arise in solving an ordinary differential equation at an
ordinary point may result in more complicated recursions.

Exercises
1. Use the ratio test (for example) to calculate the radius of convergence for

each series:

(a)
∑∞

j=0
2j

j ! x
j

(b)
∑∞

j=0
2j

3j
xj

2. Verify that R = +∞ for the power series expansions of sine and cosine.

3. Use Taylor’s formula to confirm the validity of the power series expansions
for ex , sin x, and cos x.
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4. (a) Show that the series

y = 1 − x2

2! + x4

4! − x6

6! + − · · ·
satisfies y′′ = −y.

(b) Show that the series

y = 1 − x2

22
+ x4

22 · 42
− x6

22 · 42 · 62
+ − · · ·

converges for all x. Verify that it defines a solution of equation

xy′′ + y′ + xy = 0.

This function is the Bessel function of order 0.

5. For each of the following differential equations, find a power series solu-
tion of the form

∑
j ajx

j . Endeavor to recognize this solution as the
series expansion of a familiar function.
(a) y′ = 2xy

(b) y′ + y = 1
(c) y′ − y = 2

6. For each of the following differential equations, find a power series
solution of the form

∑
j ajx

j :
(a) xy′ = y

(b) y′ − (1/x)y = x2

7. Consider the equation y′′ + xy′ + y = 0.
(a) Find its general solution y = ∑

j ajx
j in the form y = c1y1(x) +

c2y2(x), where y1, y2 are power series.
(b) Use the ratio test to check that the two series y1 and y2 from part (a)

converge for all x.

8. Use the method of power series to find a solution of each of these
differential equations:
(a) y′′ + y = x2

(b) y′′ + y′ = −x



4
CHAPTER

Fourier Series:
Basic Concepts

4.1 Fourier Coefficients
Trigonometric and Fourier series constitute one of the oldest parts of analysis. They
arose, for instance, in classical studies of the heat and wave equations. Today they
play a central role in the study of sound, heat conduction, electromagnetic waves,
mechanical vibrations, signal processing, and image analysis and compression.
Whereas power series (see Chapter 3) can only be used to represent very spe-
cial functions (most functions, even smooth ones, do not have convergent power
series), Fourier series can be used to represent very broad classes of functions.

For us, a trigonometric series is one of the form

f (x) = 1

2
a0 +

∞∑
n=1

(
an cos nx + bn sin nx

)
. (1)

115
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We shall be concerned with two main questions:

1. Given a function f , how do we calculate the coefficients an, bn?
2. Once the series for f has been calculated, can we determine that it converges,

and that it converges to f ?

Ultimately, we shall want to use Fourier and trigonometric series to solve ordinary
and partial differential equations.

We begin our study with some classical calculations that were first performed by
L. Euler (1707–1783). It is convenient to assume that our function f is defined
on the interval [−π, π] = {x ∈ R: − π ≤ x ≤ π}. We shall temporarily
make the important assumption that the trigonometric series (1) for f converges
uniformly. While this turns out to be true for a large class of functions (continuously
differentiable functions, for example), for now this is merely a convenience so that
our calculations are justified.

We apply the integral to both sides of (1). The result is∫ π

−π

f (x) dx =
∫ π

−π

[
1

2
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

]
dx

= 1

2

∫ π

−π

a0 dx +
∞∑

n=1

∫ π

−π

an cos nx dx

+
∞∑

n=1

∫ π

−π

bn sin nx dx.

The change in order of summation and integration is justified by the uniform
convergence of the series (see [KRA2, pp. 202 ff.]).

Now each of cos nx and sin nx integrates to 0. The result is that

a0 = 1

π

∫ π

−π

f (x) dx.

In effect, then, a0 is the average of f over the interval [−π, π].
To calculate aj , we multiply the formula (1) by cos jx and then integrate as

before. The result is∫ π

−π

f (x) cos jx dx

=
∫ π

−π

[
1

2
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

]
cos jx dx
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=
∫ π

−π

1

2
a0 cos jx dx

+
∞∑

n=1

∫ π

−π

an cos nx cos jx dx

+
∞∑

n=1

∫ π

−π

bn sin nx cos jx dx. (2)

Now the first integral on the right vanishes, as we have already noted. Further
recall that

cos nx cos jx = 1

2
[cos(n + j)x + cos(n − j)x]

and

sin nx cos jx = 1

2
[sin(n + j)x + sin(n − j)x].

It follows immediately that∫ π

−π

cos nx cos jx dx = 0 when n �= j

and ∫ π

−π

sin nx cos jx dx = 0 for all n, j.

Thus our formula (2) reduces to∫ π

−π

f (x) cos jx dx =
∫ π

−π

aj cos jx cos jx dx.

We may use our formula above for the product of cosines to integrate the right-hand
side. The result is ∫ π

−π

f (x) cos jx dx = aj · π

or

aj = 1

π

∫ π

−π

f (x) cos jx dx.

A similar calculation shows that

bj = 1

π

∫ π

−π

f (x) sin jx dx.



CHAPTER 4 Fourier Series118

In summary, we now have formulas for calculating all the aj ’s and bj ’s.
We display them now for reference:

a0 = 1

π

∫ π

−π

f (x) dx;

aj = 1

π

∫ π

−π

f (x) cos jx dx for j ≥ 1;

bj = 1

π

∫ π

−π

f (x) sin jx dx for j ≥ 1.

e.g. EXAMPLE 4.1
Find the Fourier series of the function

f (x) = x, −π ≤ x ≤ π.

SOLUTION
Of course

a0 = 1

π

∫ π

−π

x dx = 1

π
· x2

2

∣∣∣∣π−π

= 0.

For j ≥ 1, we calculate aj as follows:

aj = 1

π

∫ π

−π

x cos jx dx

(parts)= 1

π

[
x

sin jx

j

∣∣∣∣π−π

−
∫ π

−π

sin jx

j
dx

]
= 1

π

[
0 −

(
−cos jx

j2

∣∣∣∣π−π

)]
= 0.

Similarly, we calculate the bj :

bj = 1

π

∫ π

−π

x sin jx dx

(parts)= 1

π

[
x

− cos jx

j

∣∣∣∣π−π

−
∫ π

−π

− cos jx

j
dx

]
= 1

π

[
−2π cos jπ

j
−
(

−sin jx

j2

∣∣∣∣π−π

)]
= 2 · (−1)j+1

j
.
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Now that all the coefficients have been calculated, we may summarize the
result as

x = f (x) = 2

(
sin x − sin 2x

2
+ sin 3x

3
− + · · ·

)
.

You Try It: Calculate the Fourier series of the function

f (x) = 2x + 1.

Now calculate the Fourier series of g(x) = sin 2x. Why are your answers so
different?

It is convenient, in the study of Fourier series, to think of our functions as
defined on the entire real line. We extend a function that is initially given on the
interval [−π, π] to the entire line using the idea of periodicity. The sine function
and cosine function are periodic in the sense that sin(x + 2π) = sin x and cos(x +
2π) = cos x. We say that sine and cosine are periodic with period 2π . Thus it is
natural, if we are given a function f on [−π, π), to define f (x + 2π) = f (x),
f (x + 2 · 2π) = f (x), f (x − 2π) = f (x), etc.1

Figure 4.1 exhibits the periodic extension of the function f (x) = x on [−π, π)

to the real line.
Figure 4.2 shows the first four summands of the Fourier series for f (x) = x.

The finest dashes show the curve y = 2 sin x, the next finest is − sin 2x, the next
is (2/3) sin 3x, and the coarsest is −(1/2) sin 4x.

Figure 4.3 shows the sum of the first four terms of the Fourier series and also
of the first six terms, as compared to f (x) = x. Figure 4.4 shows the sum of the
first eight terms of the Fourier series and also of the first ten terms, as compared
to f (x) = x.

e.g.EXAMPLE 4.2
Calculate the Fourier series of the function

f (x) =
{

0 if − π ≤ x < 0

π if 0 ≤ x ≤ π.

1Notice that we take the original function f to be defined on [0, 2π) rather than [0, 2π ] to avoid any ambiguity
at the endpoints.
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SOLUTION
Following our formulas, we calculate

a0 = 1

π

∫ π

−π

f (x) dx = 1

π

∫ 0

−π

0 dx + 1

π

∫ π

0
π dx = π.

an = 1

π

∫ π

0
π cos nx dx = 0, all n ≥ 1.
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Fig. 4.3. The sum of four terms and of six terms of the Fourier series.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Fig. 4.4. The sum of eight terms and of ten terms of the Fourier series.

bn = 1

π

∫ π

0
π sin nx dx = 1

n
(1 − cos nπ) = 1

n

[
1 − (−1)n

]
.

Another way to write this last calculation is

b2n = 0, b2n−1 = 2

2n − 1
.

In sum, the Fourier expansion for f is

f (x) = π

2
+ 2

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
.

Figure 4.5 shows the fourth and sixth partial sums, compared against f (x).
Figure 4.6 shows the eighth and tenth partial sums, compared against f (x).

Math Note: The places on the graphs where the Fourier series deviates sharply
from the true function—usually at endpoints and corners—are of particular interest.
These places show up in music as unwanted noise and hiss. Filters are constructed
using Fourier analysis in order to remove these artifacts.
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Fig. 4.5. The sum of four terms and of six terms of the Fourier series.
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Fig. 4.6. The sum of eight terms and of ten terms of the Fourier series.

e.g. EXAMPLE 4.3
Find the Fourier series of the function given by

f (x) =
{

−π/2 if − π ≤ x < 0

π/2 if 0 ≤ x ≤ π.

SOLUTION
This is the same function as in the last example, with π/2 subtracted. Thus
the Fourier series may be obtained by subtracting the quantity π/2 from the
Fourier series that we obtained in that example. The result is

f (x) = 2

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
.

The graph of this function, suitably periodized, is shown in Fig. 4.7.
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Fig. 4.7. Graph of the function f (x) =
{−π/2

π/2

if − π ≤ x < 0

if 0 ≤ x ≤ π.

You Try It: Calculate the Fourier series of the function

f (x) = x2 − x, 0 ≤ x < 2π.

e.g.EXAMPLE 4.4
Calculate the Fourier series of the function

f (x) =
{

−π/2 − x/2 if − π ≤ x < 0

π/2 − x/2 if 0 ≤ x ≤ π.

SOLUTION
This function is simply the function from Example 4.3 minus half the func-
tion from Example 4.1. Thus we may obtain the requested Fourier series by
subtracting half the series from Example 4.3 from the series in Example 4.1.
The result is

f (x) = 2

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
−
(

sin x − sin 2x

2
+ sin 3x

3
− + · · ·

)
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= sin x + sin 2x

2
+ sin 3x

3
+ · · ·

=
∞∑

n=1

sin nx

n
.

The graph of this series is the sawtooth wave shown in Fig. 4.8.

☞ You Try It: Calculate the Fourier series of the function

f (x) =
{

−x if − π ≤ x < 0

x if 0 ≤ x ≤ π.

4.2 Some Remarks About Convergence
The study of convergence of Fourier series is both deep and subtle. It would
take us far afield to consider this matter in any detail. In the present section
we shall very briefly describe a few of the basic results, but we shall not prove
them.
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Fig. 4.9.

Our basic pointwise convergence result for Fourier series, which finds its
genesis in work of Dirichlet (1805–1859), is this:

DEFINITION 4.1
Let f be a function on [−π, π]. We say that f is piecewise smooth if the graph
of f consists of finitely many continuously differentiable curves, and further-
more that the one-sided derivatives exist at each of the endpoints {p1, . . . , pk}
of the definition of the curves, in the sense that

lim
h→0+

f (pj + h) − f (pj )

h
and lim

h→0−
f (pj + h) − f (pj )

h

exist. Further, we require that f ′ extend continuously to [pj , pj+1] for each
j = 1, . . . , k − 1. See Fig. 4.9.

GivenTHEOREM 4.1
Let f be a function on [−π, π] which is piecewise smooth and overall conti-
nuous. Then the Fourier series of f converges at each point c of [−π, π] to f (c).

Let f be a function on the interval [−π, π]. We say that f has a simple discon-
tinuity (or a discontinuity of the first kind) at the point c ∈ (−π, π) if the limits
limx→c− f (x) and limx→c+ f (x) exist and

lim
x→c− f (x) �= lim

x→c+ f (x).

You should understand that a simple discontinuity is in contradistinction to the
other kind of discontinuity. We say that f has a discontinuity of the second kind
at c if either limx→c− f (x) or limx→c− f (x) does not exist.
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Fig. 4.10.

e.g. EXAMPLE 4.5
The function

f (x) =
{

1 if − π ≤ x ≤ 1

2 if 1 < x ≤ π

has a simple discontinuity at x = 1. It is continuous at all other points of the
interval [−π, π]. See Fig. 4.10.

The function

g(x) =
{

sin 1
x

if x �= 0

0 if x = 0

has a discontinuity of the second kind at the origin. See Fig. 4.11.

Our next result about convergence is a bit more technical to state, but it is
important in practice, and has historically been very influential. It is due to L. Fejér.

DEFINITION 4.2
Let f be a function and let

1

2
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

be its Fourier series. The N th partial sum of this series is

SN(f )(x) = 1

2
a0 +

N∑
n=1

(an cos nx + bn sin nx).



CHAPTER 4 Fourier Series 127

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Fig. 4.11.

The Cesàro mean of the series is

σN(f )(x) = 1

N + 1

N∑
j=0

Sj (f )(x).

In other words, the Cesàro means are simply the averages of the partial sums.

GivenTHEOREM 4.2
Let f be a continuous function on the interval [−π, π]. Then the Cesàro means
σN(f ) of the Fourier series for f converge uniformly to f .

A useful companion result is this:

GivenTHEOREM 4.3
Let f be a piecewise continuous function on [−π, π]—meaning that the
graph of f consists of finitely many continuous curves. Let p be the end-
point of one of those curves, and assume that limx→p− f (x) ≡ f (p−) and
limx→p+ f (x) ≡ f (p+) exist. Then the Fourier series of f at p converges to
[f (p−) + f (p+)]/2.

In fact, with a few more hypotheses, we may make the result even sharper.
Recall that a function f is monotone increasing if x1 ≤ x2 implies f (x1) ≤ f (x2).
The function is monotone decreasing if x1 ≤ x2 implies f (x1) ≥ f (x2). If the
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function is either monotone increasing or monotone decreasing, then we just call
it monotone. Now we have this result of Dirichlet:

Given THEOREM 4.4
Let f be a function on [−π, π] which is piecewise continuous. Assume that
each piece of f is monotone. Then the Fourier series of f converges at each
point of continuity c of f in [−π, π] to f (c). At other points x it converges to
[f (x−) + f (x+)]/2.

The hypotheses in this theorem are commonly referred to as the Dirichlet
conditions.

By linearity, we may extend this last result to functions that are piecewise the
difference of two monotone functions. Such functions are said to be of bounded
variation, and exceed the scope of the present book. See [KRA2] for a detailed
discussion. The book [TIT] discusses convergence of the Fourier series of such
functions.

Math Note: A function f is said to be of bounded variation on an interval [a, b]
if there is a constant C > 0 such that, for each partition P = {x0, x1, . . . , xk} of
the interval, it holds that

k∑
j=1

|f (xj ) − f (xj−1)| ≤ C.

Such a function has a bound on its total oscillation. It can be shown that f is of
bounded variation if and only if f can be written as the difference of two monotone
functions.

4.3 Even and Odd Functions: Cosine and
Sine Series

A function f is said to be even if f (−x) = f (x). A function g is said to be odd if
g(−x) = −g(x).

e.g. EXAMPLE 4.6
The function f (x) = cos x is even because cos(−x) = cos x. The function
g(x) = sin x is odd because sin(−x) = − sin x.

☞ You Try It: Which of these functions is odd and which even?

f (x) = x sin x, g(x) = x cos x, h(x) = x3, k(x) = tan x, m(x) = e−x2
.
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Fig. 4.12. An even and an odd function.

The graph of an even function is symmetric about the y-axis. The graph of an
odd function is is skew-symmetric about the y-axis. Refer to Fig. 4.12.

If f is even on the interval [−a, a], then∫ a

−a

f (x) dx = 2
∫ a

0
f (x) dx (1)

and if f is odd on the interval [−a, a], then∫ a

−a

f (x) dx = 0. (2)

Finally, we have the following parity relations

(even) · (even) = (even) (even) · (odd) = (odd)

(odd) · (odd) = (even).

Now suppose that f is an even function on the interval [−π, π]. Then
f (x) · sin nx is odd, and therefore

bn = 1

π

∫ π

−π

f (x) sin nx dx = 0.

For the cosine coefficients, we have

an = 1

π

∫ π

−π

f (x) cos nx dx = 2

π

∫ π

0
f (x) cos nx dx.

Thus the Fourier series for an even function contains only cosine terms.
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By the same token, suppose now that f is an odd function on the interval
[−π, π]. Then f (x) · cos nx is an odd function, and therefore

an = 1

π

∫ π

−π

f (x) cos nx dx = 0.

For the sine coefficients, we have

bn = 1

π

∫ π

−π

f (x) sin nx dx = 2

π

∫ π

0
f (x) sin nx dx.

Thus the Fourier series for an odd function contains only sine terms.

e.g. EXAMPLE 4.7
Examine the Fourier series of the function f (x) = x from the point of view of
even/odd.

SOLUTION
The function is odd, so the Fourier series must be a sine series. We calculated
in Example 4.1 that the Fourier series is in fact

x = f (x) = 2

(
sin x − sin 2x

2
+ sin 3x

3
− + · · ·

)
. (3)

The expansion is valid on (−π, π), but not at the endpoints (since the series of
course sums to 0 at −π and π ).

e.g. EXAMPLE 4.8
Examine the Fourier series of the function f (x) = |x| from the point of view of
even/odd.

SOLUTION
The function is even, so the Fourier series must be a cosine series. In fact we
see that

a0 = 1

π

∫ π

−π

|x| dx = 2

π

∫ π

0
x dx = π.

Also, for n ≥ 1,

an = 2

π

∫ π

0
|x| cos nx dx = 2

π

∫ π

0
x cos nx dx.

An integration by parts gives that

an = 2

πn2
(cos nπ − 1) = 2

πn2
[(−1)n − 1].
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3π-3π ππ-

Fig. 4.13.

As a result,

a2j = 0 and a2j−1 = − 4

π(2j − 1)2
.

In conclusion,

|x| = π

2
− 4

π

(
cos x + cos 3x

32
+ cos 5x

52
+ · · ·

)
. (4)

The periodic extension of the original function f (x) = |x| on [−π, π] is
depicted in Fig. 4.13. By Theorem 4.1, the series converges to f at every point
of [−π, π].
It is worth noting that x = |x| on [0, π ]. Thus the expansions (3) and (4)

represent the same function on that interval. Of course (3) is the Fourier sine
series for x on [0, π ] while (4) is the Fourier cosine series for x on [0, π ]. More
generally, if g is any integrable function on [0, π ], we may take its odd extension
g̃ to [−π, π] and calculate the Fourier series. The result will be the Fourier sine
series expansion for g on [0, π ]. Instead we could take the even extension ˜̃g to
[−π, π] and calculate the Fourier series. The result will be the Fourier cosine
series expansion for g on [0, π ].

e.g.EXAMPLE 4.9
Find the Fourier sine series and the Fourier cosine series expansions for the
function f (x) = cos x on the interval [0, π ].

SOLUTION
Of course the Fourier series expansion of f̃ contains only sine terms. Its
coefficients will be

bn = 2

π

∫ π

0
cos x sin nx dx =

⎧⎨⎩0 if n = 1
2n

π

[
1 + (−1)n

n2 − 1

]
if n > 1.
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As a result,

b2j−1 = 0 and b2j = 8j

π(4j2 − 1)
.

The sine series for f is therefore

cos x = f (x) = 8

π

∞∑
j=1

j sin 2jx

4j2 − 1
, 0 < x < π.

To obtain the cosine series for f , we consider the even extension ˜̃f . Of course
all the bn will vanish. Also

an = 2

π

∫ π

0
cos x sin nx dx =

{
1 if n = 1

0 if n > 1.

We therefore see, not surprisingly, that the Fourier cosine series for cosine on
[0, π ] is the single summand cos x.

☞ You Try It: Find the cosine series expansion for f (x) = x − x2. Now find the
sine series expansion for f .

Math Note: You can use the idea of parity and reflection (and translation) to
produce the sine series or the cosine series of a function on any interval with
multiples of π as endpoints. As an example, calculate the cosine series of f (x) = x

on the interval [3π, 4π ].

4.4 Fourier Series on Arbitrary Intervals
We have developed Fourier analysis on the interval [−π, π] (resp. the interval
[0, π ]) just because it is notationally convenient. In particular,∫ π

−π

cos jx cos kx dx = 0 for j �= k

and so forth. This fact is special to the interval of length 2π . But many physical
problems take place on an interval of some other length. We must therefore be able
to adapt our analysis to intervals of any length. This amounts to a straightforward
change of scale on the horizontal axis. We treat the matter in the present section.
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Now we concentrate our attention on an interval of the form [−L, L]. As x runs
from −L to L, we will have a corresponding variable t that runs from −π to π .
We mediate between these two variables using the formulas

t = πx

L
and x = Lt

π
.

Thus the function f (x) on [−L, L] is transformed to a new function f̃ (t) ≡
f (Lt/π) on [−π, π].

If f satisfies the conditions for convergence of the Fourier series, then so will
f̃ , and vice versa. Thus we may consider the Fourier expansion

f̃ (t) = 1

2
a0 +

∞∑
n=1

(an cos nt + bn sin nt).

Here, of course,

an = 1

π

∫ π

−π

f̃ (t) cos nt dt and bn = 1

π

∫ π

−π

f̃ (t) sin nt dt.

Now let us write out these last two formulas and perform a change of variables.
We find that

an = 1

π

∫ π

−π

f (Lt/π) cos nt dt

= 1

π

∫ L

−L

f (x) cos
nπx

L
· π

L
dx

= 1

L

∫ L

−L

f (x) cos
nπx

L
dx.

Likewise,

bn = 1

L

∫ L

−L

f (x) sin
nπx

L
dx.

e.g.EXAMPLE 4.10
Calculate the Fourier series on the interval [−2, 2] of the function

f (x) =
{

0 if − 2 ≤ x < 0

1 if 0 ≤ x ≤ 2.
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SOLUTION
Of course L = 2, so we calculate that

an = 1

2

∫ 2

0
cos

nπx

2
dx =

{
1 if n = 0

0 if n ≥ 1.

Also

bn = 1

2

∫ 2

0
sin

nπx

L
dx = 1

nπ
[1 − (−1)n].

This may be rewritten as

b2j = 0 and b2j−1 = 2

(2j − 1)π
.

In conclusion,

f (x) = g(t) = 1

2
a0 +

∞∑
n=1

(an cos nt + bn sin nt)

= 1

2
+

∞∑
j=1

2

(2j − 1)π
sin

[
(2j − 1) · πx

2

]
.

e.g. EXAMPLE 4.11
Calculate the Fourier series of the function f (x) = cos x on the interval
[−π/2, π/2].

SOLUTION
We calculate that

a0 = 2

π

∫ π/2

−π/2
cos x · cos x dx = 1.

Also, for n ≥ 1,

an = 1

π

∫ π/2

−π/2
cos x cos nx dx

= 2

π

∫ π/2

−π/2

1

2
[cos(n + 1)x + cos(n − 1)x] dx

= 1

π

(
sin(n + 1)x

n + 1
+ sin(n + 1)x

n + 1

) ∣∣∣∣π/2

−π/2
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n is odd

2

π(n2 − 1)
if n = 2m, n �= 4m

−2

π(n2 − 1)
if n = 4m.

A similar calculation shows that

bn = 1

π

∫ π/2

−π/2
cos x sin nx dx

= 2

π

∫ π/2

−π/2

1

2
[sin(n + 1)x + sin(n − 1)x] dx

= 1

π

(− cos(n + 1)x

n + 1
+ − cos(n + 1)x

n + 1

) ∣∣∣∣π/2

−π/2

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n is even

2

π(n2 − 1)
if n = 2m + 1, n �= 4m + 1

−2

π(n2 − 1)
if n = 4m + 1.

As a result, the Fourier series expansion for cos x on the interval [−π/2,
π/2] is

cos x = f (x)

= 1

2
+

∞∑
j=1

2

π([2(2j − 1)]2 − 1)
cos([2(2j − 1)]2nx)

+
∞∑

j=1

−2

π([4j ]2 − 1)
cos([4j ]2nx)

+
∞∑

j=1

2

π([2(2j − 1) + 1]2 − 1)
sin([2(2j − 1) + 1]2nx)

+
∞∑

j=1

2

π([4j + 1]2 − 1)
sin([(4j + 1) + 1]2nx).
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☞ You Try It: Find the Fourier series expansion for f (x) = x − x2 on the interval
[−1, 1].

Math Note: We can combine the ideas of the present section with those of the
last section to produce the Fourier sine series or cosine series of a function on any
interval centered about the origin. Implement this thought to calculate the cosine
series of g(x) = x2 − x on the interval [0, 2].

4.5 Orthogonal Functions
In the classical Euclidean geometry of 3-space, just as we learn in multivariable
calculus class, one of the key ideas is that of orthogonality. Let us briefly review
it now.

If v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉 are vectors in R
3, then we define

their dot product, or inner product, or scalar product to be

v · w = v1w1 + v2w2 + v3w3.

What is the interest of the inner product? There are three answers:

• Two vectors are perpendicular or orthogonal, written v ⊥ w, if and only if
v · w = 0.

• The length of a vector is given by

‖v‖ = √
v · v.

• The angle θ between two vectors v and w is given by

cos θ = v · w
‖v‖‖w‖ .

In fact all of the geometry of 3-space is built on these three facts.
One of the great ideas of twentieth-century mathematics is that many other

spaces—sometimes abstract spaces, and sometimes infinite-dimensional spaces—
can be equipped with an inner product that endows that space with a useful geometry.
That is the idea that we shall explore in the present section.

Let X be a vector space. This means that X is equipped with (i) a notion
of addition and (ii) a notion of scalar multiplication. These two operations are
hypothesized to satisfy the expected properties: addition is commutative and
associative, scalar multiplication is commutative, associative, and distributive, and
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so forth. We say that X is equipped with an inner product (which we now denote
by 〈 , 〉) if there is a binary operation

〈 , 〉 : X × X → R

satisfying

1. 〈u + v, w〉 = 〈u, w〉;
2. 〈cu, v〉 = c〈u, v〉;
3. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0;
4. 〈u, v〉 = 〈v, u〉.

We shall give some interesting examples of inner products below. Before we do,
let us note that an inner product as just defined gives rise to a notion of length,
or a norm. Namely, we define

‖v‖ = √〈v, v〉.
By property (3), we see that ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0.

In fact the two key properties of the inner product and the norm are enunciated
in the following proposition:

GivenPROPOSITION 4.1
Let X be a vector space and 〈 , 〉 an inner product on that space. Let ‖ ‖ be the
induced norm. Then

(1) The Cauchy–Schwarz–Bunjakovski inequality: If u, v ∈ X, then

|u · v| ≤ ‖u‖ · ‖v‖.
(2) The Triangle inequality: If u, v ∈ X, then

‖u + v‖ ≤ ‖u‖ + ‖v‖.
Just as an exercise, we shall derive the Triangle inequality from the Cauchy–

Schwarz–Bunjakovski inequality. We have

‖u + v‖2 = 〈(u + v), (u + v)〉
= 〈u, u〉 + 〈u, v〉 + 〈v, u〉 + 〈v, v〉
= ‖u‖2 + ‖v‖2 + 2〈u, v〉
≤ ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖
= (‖u‖ + ‖v‖)2.

Now taking the square root of both sides completes the argument.
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e.g. EXAMPLE 4.12
Let X = C[0, 1], the continuous functions on the interval [0, 1]. This is
certainly a vector space with the usual notions of addition of functions and
scalar multiplication of functions. We define an inner product by

〈f, g〉 =
∫ 1

0
f (x)g(x) dx

for any f, g ∈ X.
Then it is straightforward to verify that this definition of inner product satisfies

all our axioms. Thus we may define two functions to be orthogonal if

〈f, g〉 = 0.

We say that the angle θ between two functions is given by

cos θ = 〈f, g〉
‖f ‖‖g‖ .

The length or norm of an element f ∈ X is given by

‖f ‖ = √〈f, f 〉 =
[∫ 1

0
f (x)2 dx

]1/2

.

e.g. EXAMPLE 4.13
Let X be the space of all sequences {aj } with the property that

∑∞
j=1 |aj |2 <

∞. This is a vector space with the obvious notions of addition and scalar
multiplication. Define an inner product by

〈{aj }, {bj }〉 =
∞∑

j=1

ajbj .

Then this inner product satisfies all our axioms.

For the purposes of studying Fourier series, the most important inner product
space is that which we call L2[−π, π]. This is the space of functions f on the
interval [−π, π] with the property that∫ π

−π

f (x)2 dx < ∞.

The inner product on this space is

〈f, g〉 =
∫ π

−π

f (x)g(x) dx.
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One must note here that, by a variant of the Cauchy–Schwarz–Bunjakovski
inequality, it holds that if f, g ∈ L2 then the integral

∫
f · g dx exists and is

finite. So our inner product makes sense.

Math Note: In fact if w ≥ 0 is any weight function then we may define the
space L2(w) to be the collection of all functions on the interval [−π, π] that satisfy
the condition ∫ π

−π

f (x)2w(x) dx < ∞.

This type of weighted function space has become very important in modern
analysis. Of course the inner product on this space is

〈f, g〉 =
∫ π

−π

f (x)g(x)w(x) dx.

This inner product will satisfy both the Cauchy–Schwarz–Bunjakovski and the
Triangle inequalities.

Exercises
1. Find the Fourier series of the function

f (x) =
⎧⎨⎩π if − π ≤ x ≤ π

2
0 if

π

2
< x ≤ π.

2. Find the Fourier series for the function

f (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if − π ≤ x < 0

1 if 0 ≤ x ≤ π

2
0 if

π

2
< x ≤ π.

3. Find the Fourier series of the function

f (x) =
{

0 if − π ≤ x < 0

sin x if 0 ≤ x ≤ π.

4. Find the Fourier series for the periodic function defined by

f (x) =
{

−π if − π ≤ x < 0

x if 0 ≤ x ≤ π.
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5. Show that the Fourier series for the periodic function

f (x) =
{

0 if − π ≤ x < 0

x2 if 0 ≤ x ≤ π

is

f (x) = π2

6
+ 2

∞∑
j=1

(−1)j
cos jx

j2

+ π

∞∑
j=1

(−1)j+1 sin jx

j
− 4

π

∞∑
j=1

sin(2j − 1)x

(2j − 1)3
.

6. Determine whether each of the following functions is even, odd, or
neither:

x5 sin x, ex, (sin x)3, sin x2, x + x2 + x3, ln
1 + x

1 − x
.

7. Show that any function f defined on a symmetrically placed interval can
be written as the sum of an even function and an odd function. Hint:
f (x) = 1

2 [f (x) + f (−x)] + 1
2 [f (x) − f (−x)].

8. Show that the sine series of the constant function f (x) ≡ π/4 is

π

4
= sin x + sin 3x

3
+ sin 5x

5
+ · · ·

for 0 < x < π . What sum is obtained by setting x = π/2? What is the
cosine series of this function?

9. Find the sine and the cosine series for f (x) = sin x.

10. Find the Fourier series for these functions:

(a) f (x) =
{

1 + x if − 1 ≤ x < 0

1 − x if 0 ≤ x ≤ 1

(b) f (x) = |x|, −2 ≤ x ≤ 2



5
CHAPTER

Partial Differential
Equations and

Boundary Value
Problems

5.1 Introduction and Historical Remarks
In the middle of the eighteenth century much attention was given to the problem of
determining the mathematical laws governing the motion of a vibrating string with
fixed endpoints at 0 and π (Fig. 5.1). An elementary analysis of tension shows that
if y(x, t) denotes the ordinate of the string at time t above the point x, then y(x, t)
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x = 0 x =

Fig. 5.1.

satisfies the wave equation

∂2y

∂t2
= a2 ∂2y

∂x2
.

Here a is a parameter that depends on the tension of the string. A change of scale
will allow us to assume that a = 1. [A bit later we shall actually provide a formal
derivation of the wave equation. See also [KRA3] for a more thorough considera-
tion of these matters.]

In 1747 d’Alembert showed that solutions of this equation have the form

y(x, t) = 1
2 [f (at + x) + g(at − x)] , (1)

where f and g are “any” functions of one variable. [The following technicality
must be noted: the functions f and g are initially specified on the interval [0, π ].
We extend f and g to [−π, 0] and to [π, 2π ] by odd reflection. Continue f and g

to the rest of the real line so that they are 2π -periodic.]
In fact the wave equation, when placed in a “well-posed” setting, comes

equipped with two boundary conditions:

y(x, 0) = φ(x)

∂ty(x, 0) = ψ(x).

These conditions mean (i) that the wave has an initial configuration that is the
graph of the function φ and (ii) that the string is released with initial velocity ψ .

If (1) is to be a solution of this boundary value problem, then f and g must
satisfy

1
2 [f (x) + g(−x)] = φ(x) (2)

and

1
2

[
f ′(x) + g′(−x)

] = ψ(x). (3)

Integration of (3) gives a formula for f (x) − g(−x). That and (2) give a system
that may be solved for f and g with elementary algebra.
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The converse statement holds as well: for any functions f and g, a function
y of the form (1) satisfies the wave equation (check this as an exercise). The
work of d’Alembert brought to the fore a controversy which had been implicit in
the work of Daniel Bernoulli, Leonhard Euler, and others: what is a “function”?
[We recommend the article [LUZ] for an authoritative discussion of the contro-
versies that grew out of classical studies of the wave equation. See also [LAN].]

It is clear, for instance, in Euler’s writings that he did not perceive a function to
be an arbitrary “rule” that assigns points of the domain to points of the range; in
particular, Euler did not think that a function could be specified in a fairly arbitrary
fashion at different points of the domain. Once a function was specified on some
small interval, Euler thought that it could only be extended in one way to a larger
interval. Therefore, on physical grounds, Euler objected to d’Alembert’s work.
Euler’s physical intuition ran contrary to his mathematical intuition. He claimed
that the initial position of the vibrating string could be specified by several different
functions pieced together continuously, so that a single f could not generate the
motion of the string.

Daniel Bernoulli solved the wave equation by a different method (separation of
variables, which we treat below) and was able to show that there are infinitely many
solutions of the wave equation having the form

φj (x, t) = sin jx cos j t.

Proceeding formally, he posited that all solutions of the wave equation satisfying
y(0, t) = y(π, t) = 0 and ∂ty(x, 0) = 0 will have the form

y =
∞∑

j=1

aj sin jx cos j t.

Setting t = 0 indicates that the initial form of the string is f (x) ≡ ∑∞
j=1 aj sin jx.

In d’Alembert’s language, the initial form of the string is 1
2

(
f (x) − f (−x)

)
, for

we know that

0 ≡ y(0, t) = f (t) + g(t)

(because the endpoints of the string are held stationary), hence g(t) = −f (−t). If
we suppose that d’Alembert’s function is odd (as is sin jx, each j ), then the initial
position is given by f (x). Thus the problem of reconciling Bernoulli’s solution to
d’Alembert’s reduces to the question of whether an “arbitrary” function f on [0, π ]
may be written in the form

∑∞
j=1 aj sin jx.

Since most mathematicians contemporary with Bernoulli believed that pro-
perties such as continuity, differentiability, and periodicity were preserved under
(even infinite) addition, the consensus was that arbitrary f could not be represented
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as a (even infinite) trigonometric sum. The controversy extended over some
years and was fueled by further discoveries (such as Lagrange’s technique for
interpolation by trigonometric polynomials) and more speculations.

In the 1820s, the problem of representation of an “arbitrary” function by trigono-
metric series was given a satisfactory answer as a result of two events. First there
is the sequence of papers by Joseph Fourier culminating with the tract [FOU].
Fourier gave a formal method of expanding an “arbitrary” function f into a trigono-
metric series. He computed some partial sums for some sample f ’s and verified
that they gave very good approximations to f . Secondly, Dirichlet proved the first
theorem giving sufficient (and very general) conditions for the Fourier series of
a function f to converge pointwise to f . Dirichlet was one of the first, in 1828, to
formalize the notions of partial sum and convergence of a series; his ideas certainly
had antecedents in work of Gauss and Cauchy.

For all practical purposes, these events mark the beginning of the mathematical
theory of Fourier series (see [LAN]).

5.2 Eigenvalues, Eigenfunctions, and the
Vibrating String

5.2.1 BOUNDARY VALUE PROBLEMS
We wish to motivate the physics of the vibrating string. We begin this discussion
by seeking a nontrivial solution y of the differential equation

y′′ + λy = 0 (1)

subject to the conditions

y(0) = 0 and y(π) = 0. (2)

Notice that this is a different situation from the one we have studied in earlier parts
of the book. In Chapter 2, on second-order linear equations, we usually had initial
conditions y(x0) = y0 and y′(x0) = y1. Now we have what are called boundary
conditions: we specify the value (not the derivative) of our solution at two different
points. For instance, in the discussion of the vibrating string in the last section,
we wanted our string to be pinned down at the two endpoints. These are typical
boundary conditions coming from a physical problem.

The situation with boundary conditions is quite different from that for initial
conditions. The latter is a sophisticated variation of the fundamental theorem of
calculus. The former is rather more subtle. So let us begin to analyze.
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First, if λ < 0, then it is known that any solution of (1) has at most one zero.
So it certainly cannot satisfy the boundary conditions (2). Alternatively, we could
just solve the equation explicitly when λ < 0 and see that the independent solu-
tions are a pair of exponentials, no linear combination of which can satisfy (2).

If λ = 0, then the general solution of (1) is the linear function y = Ax + B.
Such a function cannot vanish at two points unless it is identically zero.

So the only interesting case is λ > 0. In this situation, the general solution
of (1) is

y = A sin
√

λx + B cos
√

λx.

Since y(0) = 0, this in fact reduces to

y = A sin
√

λx.

In order for y(π) = 0, we must have
√

λπ = nπ for some positive integer n,
thus λ = n2. These values of λ are termed the eigenvalues of the problem, and
the corresponding solutions

sin x, sin 2x, sin 3x, . . .

are called the eigenfunctions of the problem (1), (2).
We note these immediate properties of the eigenvalues and eigenfunctions for

our problem:

(i) If φ is an eigenfunction for eigenvalue λ, then so is c · φ for any
constant c.

(ii) The eigenvalues 1, 4, 9, . . . form an increasing sequence that approaches
+∞.

(iii) The nth eigenfunction sin nx vanishes at the endpoints 0, π (as we
originally mandated) and has exactly n − 1 zeros in the interval (0, π).

5.2.2 DERIVATION OF THE WAVE EQUATION
Now let us re-examine the vibrating string from the last section and see how eigen-
functions and eigenvalues arise naturally in this physical problem. We consider a
flexible string with negligible weight that is fixed at its ends at the points (0, 0) and
(π, 0). The curve is deformed into an initial position y = f (x) in the x–y plane
and then released.

Our analysis will ignore damping effects, such as air resistance. We assume
that, in its relaxed position, the string is as in Fig. 5.2. The string is plucked in the
vertical direction, and is thus set in motion in a vertical plane.
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Fig. 5.2.

x x x + x

T(x,t)

T(x + x, t)

+

Fig. 5.3.

We focus attention on an “element” �x of the string (Fig. 5.3) that lies between x

and x +�x. We adopt the usual physical conceit of assuming that the displacement
(motion) of this string element is small, so that there is only a slight error in
supposing that the motion of each point of the string element is strictly vertical.
We let the tension of the string, at the point x at time t , be denoted by T (x, t).
Note that T acts only in the tangential direction (i.e., along the string). We denote
the mass density of the string by ρ.

Since there is no horizontal component of acceleration, we see that

T (x + �x, t) · cos(θ + �θ) − T (x, t) · cos(θ) = 0. (3)

[Refer to Fig. 5.4: The expression T (�) · cos(�) denotes H(�), the horizontal
component of the tension.] Thus equation (3) says that H is independent of x.

Now we look at the vertical component of force (acceleration):

T (x + �x, t) · sin(θ + �θ) − T (x, t) · sin(θ) = ρ · �x · utt (x, t). (4)

Here x is the mass center of the string element and we are applying Newton’s
second law—that the external force is the mass of the string element times the
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T

H = T cos

V = T sin

Fig. 5.4.

acceleration of its center of mass. We use subscripts to denote derivatives. We
denote the vertical component of T (�) by V (�). Thus equation (4) can be written as

V (x + �x, t) − V (x, t)

�x
= ρ · utt (x, t).

Letting �x → 0 yields

Vx(x, t) = ρ · utt (x, t). (5)

We would like to express equation (5) entirely in terms of u, so we notice that

V (x, t) = H(t) tan θ = H(t) · ux(x, t).

[We have used the fact that the derivative in x is the slope of the tangent line, which
is tan θ .] Substituting this expression for V into (5) yields

(Hux)x = ρ · utt .

But H is independent of x, so this last line simplifies to

H · uxx = ρ · utt .

For small displacements of the string, θ is nearly zero, so H = T cos θ is nearly
T . Thus we finally write our equation as

T

ρ
uxx = utt .

It is traditional to denote the constant on the left by a2. We finally arrive at the
wave equation

a2uxx = utt .
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Math Note: The wave equation is an instance of a class of equations called
hyperbolic partial differential equations. There are also elliptic equations (such as
the Laplacian) and parabolic equations (such as the heat equation). We shall say
more about these as the book develops.

5.2.3 SOLUTION OF THE WAVE EQUATION
We consider the wave equation

a2yxx = ytt (6)

with the boundary conditions

y(0, t) = 0

and

y(π, t) = 0.

Physical considerations dictate that we also impose the initial conditions

∂y

∂t

∣∣∣∣
t=0

= 0 (7)

(indicating that the initial velocity of the string is 0) and

y(x, 0) = f (x) (8)

(indicating that the initial configuration of the string is the graph of the function f ).
We solve the wave equation using a classical technique known as “separation

of variables.” For convenience, we assume that the constant a = 1. We guess a
solution of the form u(x, t) = u(x) · v(t). Putting this guess into the differential
equation

uxx = utt

gives

u′′(x)v(t) = u(x)v′′(t).

We may obviously separate variables, in the sense that we may write

u′′(x)

u(x)
= v′′(t)

v(t)
.



CHAPTER 5 Boundary Value Problems 149

The left-hand side depends only on x while the right-hand side depends only on t .
The only way this can be true is if

u′′(x)

u(x)
= λ = v′′(t)

v(t)

for some constant λ. But this gives rise to two second-order linear, ordinary
differential equations that we can solve explicitly:

u′′ = λ · u (9)

v′′ = λ · v. (10)

Observe that this is the same constant λ in both of these equations. Now, as
we have already discussed, we want the initial configuration of the string to pass
through the points (0, 0) and (π, 0). We can achieve these conditions by solving (9)
with u(0) = 0 and u(π) = 0. But of course this is the eigenvalue problem that we
treated at the beginning of the section. The problem has a nontrivial solution if and
only if λ = n2 for some positive integer n, and the corresponding eigenfunction is

un(x) = sin nx.

For this same λ, the general solution of (10) is

v(t) = A sin nt + B cos nt.

If we impose the requirement that v′(0) = 0, so that (7) is satisfied, then A = 0
and we find the solution

v(t) = B cos nt.

This means that the solution we have found of our differential equation with
boundary and initial conditions is

yn(x, t) = sin nx cos nt. (11)

And in fact any finite sum with coefficients (or linear combination) of these
solutions will also be a solution:

y = α1 sin x cos t + α2 sin 2x cos 2t + · · · αk sin kx cos kt.

Ignoring the rather delicate issue of convergence (which was discussed a bit in
Section 4.2), we may claim that any infinite linear combination of the solutions
(11) will also be a solution:

y =
∞∑

j=1

bj sin jx cos j t. (12)
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Now we must examine the final condition (8). The mandate y(x, 0) = f (x)

translates to
∞∑

j=1

bj sin jx = y(x, 0) = f (x) (13)

or
∞∑

j=1

bjuj (x) = y(x, 0) = f (x). (14)

Thus we demand that f have a valid Fourier series expansion. We know from our
studies in Chapter 4 that such an expansion is valid for a rather broad class of
functions f . Thus the wave equation is solvable in considerable generality.

Now fix m �= n. We know that our eigenfunctions uj satisfy

u′′
m = −m2um and u′′

n = −n2un.

Multiply the first equation by un and the second by um and subtract. The result is

unu
′′
m − umu′′

n = (n2 − m2)unum

or

[unu
′
m − umu′

n]′ = (n2 − m2)unum.

We integrate both sides of this last equation from 0 to π and use the fact that
uj (0) = uj (π) = 0 for every j . The result is

0 = [unu
′
m − umu′

n]
∣∣∣∣π
0

= (n2 − m2)

∫ π

0
um(x)un(x) dx.

Thus ∫ π

0
sin mx sin nx dx = 0 for n �= m (15)

or ∫ π

0
um(x)un(x) dx = 0 for n �= m. (16)

Of course this is a standard fact from calculus. But now we understand it as an
orthogonality condition, and we see how the condition arises naturally from the
differential equation. A little later, we shall fit this phenomenon into the general
context of Sturm–Liouville problems.
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In view of the orthogonality condition (16), it is natural to integrate both sides
of (14) against uk(x). The result is∫ π

0
f (x) · uk(x) dx =

∫ π

0

⎡⎣ ∞∑
j=0

bjuj (x)

⎤⎦ · uk(x) dx

=
∞∑

j=0

bj

∫ π

0
uj (x)uk(x) dx

= π

2
bk.

The bk are the Fourier coefficients that we studied in Chapter 4.

Math Note: The calculations that we performed in this section can be fitted into
a much more general context. We shall give a taste of these ideas in Section 5.5.
Certainly orthogonality, and orthogonal expansions, is one of the most pervasive
ideas in modern analysis.

5.3 The Heat Equation:
Fourier’s Point of View

In [FOU], Fourier considered variants of the following basic question. Let there be
given an insulated, homogeneous rod of length π with initial temperature at each
x ∈ [0, π ] given by a function f (x) (Fig. 5.5). Assume that the endpoints are held
at temperature 0, and that the temperature of each cross-section is constant. The
problem is to describe the temperature u(x, t) of the point x in the rod at time t .

Let us now indicate the manner in which Fourier solved his problem. First, it is
required to write a differential equation which u satisfies. We shall derive such an
equation using three physical principles:

(1) The density of heat energy is proportional to the temperature u, hence the
amount of heat energy in any interval [a, b] of the rod is proportional to∫ b

a
u(x, t) dx.

(2) (Newton’s Law of Cooling). The rate at which heat flows from a hot
place to a cold one is proportional to the difference in temperature. The
infinitesimal version of this statement is that the rate of heat flow across a
point x (from left to right) is some negative constant times ∂xu(x, t).

(3) (Conservation of Energy). Heat has no sources or sinks.



CHAPTER 5 Boundary Value Problems152

0

Fig. 5.5.

Now (3) tells us that the only way that heat can enter or leave any interval portion
[a, b] of the rod is through the endpoints. And (2) tells us exactly how this happens.
Using (1), we may therefore write

d

dt

∫ b

a

u(x, t) dx = η2[∂xu(b, t) − ∂xu(a, t)].

We may rewrite this equation as∫ b

a

∂tu(x, t) dx = η2
∫ b

a

∂2
xu(x, t) dx.

Differentiating in b, we find that

∂tu = η2∂2
xu, (4)

and that is the heat equation.
Suppose for simplicity that the constant of proportionality η2 equals 1. Fourier

guessed that the equation (4) has a solution of the form u(x, t) = α(x)β(t).
Substituting this guess into the equation yields

α(x)β ′(t) = α′′(x)β(t)

or

β ′(t)
β(t)

= α′′(x)

α(x)
.
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Since the left side is independent of x and the right side is independent of t , it
follows that there is a constant K such that

β ′(t)
β(t)

= K = α′′(x)

α(x)

or

β ′(t) = Kβ(t)

α′′(x) = Kα(x).

We conclude that β(t) = CeKt . The nature of β, and hence of α, thus depends on
the sign of K . But physical considerations tell us that the temperature will dissipate
as time goes on, so we conclude that K ≤ 0. Therefore α(x) = cos

√−Kx and
α(x) = sin

√−Kx are solutions of the differential equation for α. The initial
conditions u(0, t) = u(π, t) = 0 (since the ends of the rod are held at constant
temperature 0) eliminate the first of these solutions and force K = −j2, j ∈ Z.
Thus Fourier found the solutions

uj (x, t) = e−j2t sin jx, j ∈ N

of the heat equation. By linearity, any finite linear combination∑
j

bj e
−j2t sin jx

of these solutions is also a solution. It is plausible to extend this assertion to infinite
linear combinations. Using the initial condition u(x, 0) = f (x) again raises the
question of whether “any” function f (x) on [0, π ] can be written as a (infinite)
linear combination of the functions sin jx.

Fourier’s solution to this last problem (of the sine functions spanning essentially
everything) is roughly as follows. Suppose f is a function that is so representable:

f (x) =
∑
j

bj sin jx. (5)

Setting x = 0 gives

f (0) = 0.

Differentiating both sides of (5) and setting x = 0 gives

f ′(0) =
∞∑

j=1

jbj .
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Successive differentiation of (5), and evaluation at 0, gives

f (k)(0) =
∞∑

j=1

jkbj (−1)[k/2].

for k odd (by oddness of f , the even derivatives must be 0 at 0). Here [ ] denotes
the greatest integer function. Thus Fourier devised a system of infinitely many
equations in the infinitely many unknowns {bj }. He proceeded to solve this system
by truncating it to an N × N system (the first N equations restricted to the first N

unknowns), solved that truncated system, and then let N tend to ∞. Suffice it to say
that Fourier’s arguments contained many dubious steps (see [FOU] and [LAN]).

The upshot of Fourier’s intricate and lengthy calculations was that

bj = 2

π

∫ π

0
f (x) sin jx dx. (6)

By modern standards, Fourier’s reasoning was specious, for he began by assum-
ing that f possessed an expansion in terms of sine functions. The formula (6)

hinges on that supposition, together with steps in which one compensated division
by zero with a later division by ∞. Nonetheless, Fourier’s methods give an actual
procedure for endeavoring to expand any given f in a series of sine functions.

Fourier’s abstract arguments constitute the first part of his book. The bulk, and
remainder, of the book consists of separate chapters in which the expansions for
particular functions are computed.

Math Note: You will notice several parallels between our analysis of the heat
equation in this section and the solution of the wave equation in Subsection 5.2.3.
In both instances we assumed a solution of the form α(x)β(t). In both cases this
led to trigonometric solutions. And for the general solution we considered a trigono-
metric series. Thus there are unifying principles that occur repeatedly in different
parts of the theory of differential equations. Certainly Fourier series is one of
those principles.

e.g. EXAMPLE 5.1
Suppose that the thin rod in the setup of the heat equation is first immersed in
boiling water so that its temperature is uniformly 100◦C. Then imagine that it is
removed from the water at time t = 0 with its ends immediately put into ice so
that these ends are kept at temperature 0◦C. Find the temperature u = u(x, t)

under these circumstances.
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SOLUTION
The initial temperature distribution is given by the constant function

f (x) = 100, 0 < x < π.

The two boundary conditions, and the other initial condition, are as usual. Thus
our job is simply this: to find the sine series expansion of this function f . Notice
that bj = 0 when j is even. For j odd, we calculate that

bj = 2

π

∫ π

0
100 sin jx dx = −200

π

cos jx

j

∣∣∣∣π
0

= 400

πj
as long as j is odd.

Thus

f (x) = 400

π

(
sin x + sin 3x

3
+ sin 5x

5
+ · · ·

)
.

Now, referring to formula (5) from our general discussion of the heat equation,
we know that

u(x, t) = 400

π

[
e−a2t sin x + 1

3
e−9a2t sin 3x + 1

5
e−25a2t sin 5x + · · ·

]
.

You Try It: If a rod of length 2 has its ends held steadily at temperatures 0◦C
and 100◦C, then what is the steady-state temperature at the points of the rod?

e.g.EXAMPLE 5.2
Find the steady-state temperature of the thin rod from our analysis of the heat
equation if the fixed temperatures at the ends x = 0 and x = π are w1 and w2
respectively.

SOLUTION
The phrase “steady state” means that ∂u/∂t = 0, so that the heat equation
reduced to ∂2u/∂x2 = 0 or d2u/dx2 = 0. The general solution is then u =
Ax + B. The values of these two constants are forced by the two boundary
conditions; a little high-school algebra tells us that

u = w1 + 1

π
(w2 − w1)x.
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The steady-state version of the three-dimensional heat equation

a2
(

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
= ∂u

∂t

is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= 0.

This last is called Laplace’s equation. The study of this equation and its solutions
and subsolutions and their applications is a deep and rich branch of mathematics
called potential theory. There are applications to heat, to gravitation, to electro-
magnetics, and to many other parts of physics. The equation plays a central role in
the theory of partial differential equations, and is also an integral part of complex
variable theory.

Math Note: We now have a good understanding of heat flow in a rod. It is
natural to wonder about heat flow in a two-dimensional conductor, such as a
disc. Two-dimensional (and higher-dimensional) analysis is quite different from
the analysis in one dimension. We shall get a taste of the higher-dimensional tools
in the next section.

5.4 The Dirichlet Problem for a Disc
We now study the two-dimensional Laplace equation, which is

�u = ∂2u

∂x2
+ ∂2u

∂y2
= 0.

It will be useful for us to write this equation in polar coordinates. To do so,
recall that

r2 = x2 + y2, x = r cos θ, y = r sin θ.

Thus

∂

∂r
= ∂x

∂r

∂

∂x
+ ∂y

∂r

∂

∂y
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= ∂x

∂θ

∂

∂x
+ ∂y

∂θ

∂

∂y
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
.
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We may solve these two equations for the unknowns ∂/∂x and ∂/∂y. The result is

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

∂

∂y
= sin θ

∂

∂r
− cos θ

r

∂

∂θ
.

A tedious calculation now reveals that

� = ∂2

∂x2
+ ∂2

∂y2

=
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
+
(

sin θ
∂

∂r
− cos θ

r

∂

∂θ

)(
sin θ

∂

∂r
− cos θ

r

∂

∂θ

)

= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

Let us fall back once again on the separation of variables method. We will
seek a solution w = w(r, θ) = u(r) · v(θ) of the Laplace equation. Using the polar
form, we find that this leads to the equation

u′′(r) · v(θ) + 1

r
u′(r) · v(θ) + 1

r2
u(r) · v′′(θ) = 0.

Thus

r2u′′(r) + ru′(r)
u(r)

= −v′′(θ)

v(θ)
.

Since the left-hand side depends only on r , and the right-hand side only on θ ,
both sides must be constant. Denote the common constant value by λ.

Then we have

v′′ + λv = 0 (1)

and

r2u′′ + ru′ − λu = 0. (2)

If we demand that v be continuous and periodic, then we must demand that λ > 0
and in fact that λ = n2 for some nonnegative integer n. We have studied this
situation in detail in Section 5.2. For n = 0 the only suitable solution is v ≡ constant
and for n > 0 the general solution (with λ = n2) is

y = A cos nθ + B sin nθ.
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We set λ = n2 in equation (2), and obtain

r2u′′ + ru′ − n2u = 0,

which is Euler’s equidimensional equation. The change of variables x = ez

transforms this equation to a linear equation with constant coefficients, and that
can in turn be solved with our standard techniques. The result is

u = A + B ln r if n = 0;
u = Arn + Br−n if n = 1, 2, 3, . . . .

We are most interested in solutions u that are continuous at the origin, so we take
B = 0 in all cases. The resulting solutions are

n = 0, w = a constant a0/2;
n = 1, w = r(a1 cos θ + b1 sin θ);
n = 2, w = r2(a2 cos 2θ + b2 sin 2θ);
n = 3, w = r3(a3 cos 3θ + b3 sin 3θ);

. . .

Of course any finite sum of solutions of Laplace’s equation is also a solution.
The same is true for infinite sums. Thus we are led to consider

w = w(r, θ) = 1
2a0 +

∞∑
j=1

rj (aj cos jθ + bj sin jθ).

On a formal level, letting r → 1− in this last expression gives

w = 1
2a0 +

∞∑
j=1

(aj cos jθ + bj sin jθ).

Math Note: We draw all these ideas together with the following physical rubric.
Consider a thin aluminum disc of radius 1, and imagine applying a heat distribution
to the boundary of that disc. In polar coordinates, this distribution is specified by a
function f (θ). We seek to understand the steady-state heat distribution on the entire
disc. So we seek a function w(r, θ), continuous on the closure of the disc, which
agrees with f on the boundary and which represents the steady-state distribution
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of heat inside. Some physical analysis shows that such a function w is the solution
of the boundary value problem

�w = 0,

w

∣∣∣∣
∂D

= f.

According to the calculations we performed above, a natural approach to this
problem is to expand the given function f in its Fourier series:

f (θ) = 1
2a0 +

∞∑
j=1

(aj cos jθ + bj sin jθ)

and then posit that the w we seek is

w(r, θ) = 1
2a0 +

∞∑
j=1

rj (aj cos jθ + bj sin jθ).

This process is known as solving the Dirichlet problem on the disc with boundary
data f .

e.g.EXAMPLE 5.3
Follow the paradigm just sketched to solve the Dirichlet problem on the disc
with f (θ) = 1 on the top half of the boundary and f (θ) = −1 on the bottom
half of the boundary.

SOLUTION
It is straightforward to calculate that the Fourier series (sine series) expansion
for this f is

f (θ) = 4

π

(
sin θ + sin 3θ

3
+ +sin 5θ

5
+ · · ·

)
.

The solution of the Dirichlet problem is therefore

w(r, θ) = 4

π

(
r sin θ + r3 sin 3θ

3
+ +r5 sin 5θ

5
+ · · ·

)
.

You Try It: Solve the Dirichlet problem on the disc with boundary data f (θ) = θ ,
0 ≤ θ < 2π .
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5.4.1 THE POISSON INTEGRAL
We have presented a formal procedure with series for solving the Dirichlet
problem. But in fact it is possible to produce a closed formula for this solution.
This we now do.

Referring back to our sine series expansion for f , and the resulting expansion
for the solution of the Dirichlet problem, we recall that

aj = 1

π

∫ π

−π

f (φ) cos jφ dφ and bj = 1

π

∫ π

−π

f (φ) sin jφ dφ.

Thus

w(r, θ) = 1

2
a0 +

∞∑
j=1

rj

(
1

π

∫ π

−π

f (φ) cos jφ dφ

)
cos jθ

+
(

1

π

∫ π

−π

f (φ) sin jφ dφ sin jθ

)
.

This, in turn, equals

1

2
a0 + 1

π

∞∑
j=1

rj

∫ π

−π

f (φ)
[

cos jφ cos jθ

+ sin jφ sin jθdφ
]

= 1

2
a0 + 1

π

∞∑
j=1

rj

∫ π

−π

f (φ) [cos j (θ − φ)dφ].

We finally simplify our expression to

w(r, θ) = 1

π

∫ π

−π

f (φ)

⎡⎣1

2
+

∞∑
j=1

rj cos j (θ − φ)

⎤⎦ dφ.

It behooves us, therefore, to calculate the sum inside the brackets. For simplicity,
we let α = θ − φ and then we let

z = reiα = r(cos α + i sin α).

Likewise

zn = rneinα = rn(cos nα + i sin nα).
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Let Re z denote the real part of the complex number z. Then

1

2
+

∞∑
j=1

rj cos jα = Re

⎡⎣1

2
+

∞∑
j=1

zj

⎤⎦
= Re

[
−1

2
+ 1

1 − z

]
= Re

[
1 + z

2(1 − z)

]
= Re

[
(1 + z)(1 − z)

2|1 − z|2
]

= 1 − |z|2
2|1 − z|2

= 1 − r2

2(1 − 2r cos α + r2)
.

Putting the result of this calculation into our original formula for w we finally
obtain the Poisson integral formula:

w(r, θ) = 1

2π

∫ π

−π

1 − r2

1 − 2r cos α + r2
f (φ) dφ.

Observe what this formula does for us: It expresses the solution of the Dirichlet
problem with boundary data f as an explicit integral of a universal expression
(called a kernel) against that data function f .

There is a great deal of information about w and its relation to f contained in
this formula. As just one simple instance, we note that when r is set equal to 0,
we obtain

w(0, θ) = 1

2π

∫ π

−π

f (φ) dφ.

This says that the value of the steady-state heat distribution at the origin is just the
average value of f around the circular boundary.

Math Note: The Poisson kernel (and integral) is but one example of a reproducing
kernel in mathematics. There are many others—the Cauchy kernel, the Bergman
kernel, and the Szegö among them. These are powerful tools for analyzing and
continuing (or extending) functions.
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5.5 Sturm–Liouville Problems
We wish to place the idea of eigenvalues and eigenfunctions into a broader con-
text. This setting is the fairly broad and far-reaching subject of Sturm–Liouville
problems.

Recall that a sequence yj of functions such that∫ b

a

ym(x)yn(x) dx = 0 for m �= n

is said to be an orthogonal system on the interval [a, b]. If∫ b

a

y2
j (x) dx = 1

for each j , then we call our collection of functions an orthonormal system or
orthonormal sequence. It turns out (and we have seen several instances of this
phenomenon) that the sequence of eigenfunctions associated with a wide variety
of boundary value problems enjoys the orthogonality property.

Now consider a differential equation of the form

d

dx

[
p(x)

dy

dx

]
+ [λq(x) + r(x)]y = 0; (1)

we shall be interested in solutions valid on an interval [a, b]. We know that, under
suitable conditions on the coefficients, a solution of this equation (1) that takes
a prescribed value and a prescribed derivative value at a fixed point x0 ∈ [a, b]
will be uniquely determined. In other circumstances, we may wish to prescribe the
values of y at two distinct points, say at a and at b. We now begin to examine
the conditions under which such a boundary value problem has a nontrivial
solution.

e.g. EXAMPLE 5.4
Consider the equation (1) with p(x) ≡ q(x) ≡ 1 and r(x) ≡ 0. Then the
differential equation becomes

y′′ + λy = 0.

We take the domain interval to be [0, π ] and the boundary conditions to be

y(0) = 0, y(π) = 0.

What are the eigenvalues and eigenfunctions for this problem?
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SOLUTION
Of course we completely analyzed this problem in Section 5.2. But now, as
motivation for the work in this section, we review. We know that, in order
for this boundary value problem to have a solution, the parameter λ can only
assume the values λn = n2, n = 1, 2, 3, . . . . The corresponding solutions to
the differential equation are yn(x) = sin nx. We call λn the eigenvalues for
the problem and yn the eigenfunctions (or sometimes the eigenvectors) for the
problem.

You Try It: Consider the differential equation

y′′ + λy = 0.

We take the domain interval to be [0, π ] and the boundary conditions to be

y(0) = 0, y(π) = 0.

What are the eigenvalues and eigenfunctions for this problem?

It will turn out—and this is the basis for the Sturm–Liouville theory—that if
p, q > 0 on [a, b], then the equation (1) will have a solvable boundary value
problem—for a certain discrete set of values of λ—with data specified at points a

and b. These special values of λ will of course be the eigenvalues for the boundary
value problem. They are real numbers that we shall arrange in their natural order

λ1 < λ2 < · · · < λn < · · · ,

and we shall learn that λj → +∞. The corresponding eigenfunctions will then
be ordered as y1, y2, . . . .

Now let us examine possible orthogonality properties for the eigenfunctions of
the boundary value problem for equation (1). Consider the differential equation
(1) with two different eigenvalues λm and λn and ym and yn the corresponding
eigenfunctions:

d

dx

[
p(x)

dym

dx

]
+ [λq(x) + r(x)]ym = 0

and

d

dx

[
p(x)

dyn

dx

]
+ [λq(x) + r(x)]yn = 0.

We convert to the more convenient prime notation for derivatives, multiply the
first equation by yn and the second by ym, and subtract. The result is

yn(py′
m)′ − ym(py′

n)
′ + (λm − λn)qymyn = 0.
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We move the first two terms to the right-hand side of the equation and integrate
from a to b. Hence

(λm − λn)

∫ b

a

qymyn dx

=
∫ b

a

ym(py′
n)

′ dx −
∫ b

a

yn(py′
m)′ dx

(parts)= [
ym(py′

n)
]b
a

−
∫ b

a

y′
m(py′

n) dx

− [
yn(py′

m)
]b
a

+
∫ b

a

y′
n(py′

m) dx

= p(b)[ym(b)y′
n(b) − yn(b)y′

m(b)]
− p(a)[ym(a)y′

n(a) − yn(a)y′
m(a)].

Let us denote by W(x) the Wronskian determinant1 of the two solutions ym, yn.
Thus

W(x) = ym(x)y′
n(x) − yn(x)y′

m(x).

Then our last equation can be written in the more compact form

(λm − λn)

∫ b

a

qymyn dx = p(b)W(b) − p(a)W(a).

Notice that things have turned out so nicely, and certain terms have cancelled,
just because of the special form of the original differential equation.

We want the right-hand side of this last equation to vanish. This will certainly
be the case if we require the familiar boundary conditions

y(a) = 0 and y(b) = 0

or instead we require that

y′(a) = 0 and y′(b) = 0.

Either of these will guarantee that the Wronskian vanishes, and therefore∫ b

a

ym · yn · q dx = 0.

This is called an orthogonality condition with weight q.

1It is a fact that the Wronskian is either identically 0 or never 0. In the second instance, we may conclude that
ym, yn are linearly independent. Otherwise they are linearly dependent.
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With such a condition in place, we can consider representing an arbitrary
function f as a linear combination of the yj :

f (x) = a1y1(x) + a2y2(x) + · · · + ajyj (x) + · · · . (2)

We may determine the coefficients aj by multiplying both sides of this equation
by yk · q and integrating from a to b. Thus

∫ b

a

f (x)yk(x)q(x) dx =
∫ b

a

[
a1y1(x) + a2y2(x) + · · ·

+ ajyj (x) + · · · ]yk(x)q(x) dx

=
∑
j

aj

∫ b

a

yj (x)yk(x)q(x) dx

= ak

∫ b

a

y2
k (x)q(x) dx.

Thus

ak =
∫ b

a
f (x)yk(x)q(x) dx∫ b

a
y2
k (x)q(x) dx

.

Math Note: You should notice the parallel between these calculations and the
ones we performed in Subsection 5.2.3. The idea of orthogonality with respect to
a weight has now arisen for us in a concrete context. Certainly Sturm–Liouville
problems play a prominent role in engineering problems, especially ones coming
from mechanics.

There is an important question that now must be asked. Namely, are there enough
of the eigenfunctions yj so that virtually any function f can be expanded as in
(2)? For instance, the functions y1(x) = sin x, y3(x) = sin 3x, y7(x) = sin 7x

are orthogonal on [−π, π], and for any function f one can calculate coefficients
a1, a3, a7. But there is no hope that a large class of functions f can be spanned by
just y1, y3, y7. We need to know that our yj ’s “fill out the space.” The study of this
question is beyond the scope of the present text, as it involves ideas from Hilbert
space (see [RUD]). Our intention here has been merely to acquaint the reader with
some of the language of Sturm–Liouville problems.
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Exercises
1. Find the eigenvalues λn and the eigenfunctions yn for the equation y′′ +

λy = 0 in each of the following instances:
(a) y(0) = 0, y(π/2) = 0

(b) y(0) = 0, y(2π) = 0

(c) y(0) = 0, y(1) = 0

2. Solve the vibrating string problem in the text if the initial shape y(x, 0) =
f (x) is specified by the given function. In each case, sketch the initial
shape of the string on a set of axes.

(a) f (x) =
{

2x/π if 0 ≤ x ≤ π/2

2(π − x)/π if π/2 < x ≤ π

(b) f (x) = 1

π
x(π − x)

3. Solve the vibrating string problem in the text if the initial shape y(x, 0) =
f (x) is that of a single arch of the sine curve f (x) = c sin x. Show
that the moving string has the same general shape, regardless of the
value of c.

4. The problem of the struck string is that of solving the wave equation with
the boundary conditions

y(0, t) = 0, y(π, t) = 0

and the initial conditions

∂y

∂t

∣∣∣∣
t=0

= g(x) and y(x, 0) = 0.

[These initial conditions mean that the string is initially in the equilibrium
position, and has an initial velocity g(x) at the point x as a result of
being struck.] By separating variables and proceeding formally, obtain
the solution

y(x, t) =
∞∑

j=1

cj sin jx sin jat.

5. Solve the problem of finding w(x, t) for the rod with insulated ends at
x = 0 and x = π (with temperatures held at 0 degrees) if the initial
temperature distribution is given by w(x, 0) = f (x).
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6. Solve the Dirichlet problem for the unit disc when the boundary function
f (θ) is defined by
(a) f (θ) = cos θ/2, −π ≤ θ ≤ π

(b) f (θ) = θ , −π ≤ θ ≤ π

(c) f (θ) =
{

0 if − π ≤ θ < 0

sin θ if 0 ≤ θ ≤ π

7. Show that the Dirichlet problem for the disc {(x, y) : x2 + y2 ≤ R2},
where f (θ) is the boundary function, has the solution

w(r, θ) = 1

2
a0 +

∞∑
j=1

( r

R

)j

(aj cos jθ + bj sin jθ)

where aj and bj are the Fourier coefficients of f .

8. Solve the vibrating string problem if the initial shape y(x, 0) = f (x) is
specified by the function

f (x) =
⎧⎨⎩x if 0 ≤ x ≤ π

2
π − x if

π

2
< x ≤ π.

9. Solve the Dirichlet problem for the unit disc when the boundary function
f (θ) is defined by f (θ) = θ − |θ |, −π ≤ θ ≤ π .



6
CHAPTER

Laplace Transforms

6.1 Introduction
The idea of the Laplace transform has had a profound influence over the develop-
ment of mathematical analysis. It also plays a significant role in mathematical
applications. More generally, the overall theory of transforms has become an
important part of modern mathematics.

The idea of a transform is that it turns a given function into another function.
We are already acquainted with several transforms:

I. The derivative D takes a differentiable function f (defined on some interval
(a, b)) and assigns to it a new function Df = f ′.

II. The integral I takes a continuous function f (defined on some interval
[a, b] and assigns to it a new function

If (x) =
∫ x

a

f (t) dt.

III. The multiplication operator Mϕ , which multiplies any given function f on
the interval [a, b] by a fixed function ϕ on [a, b], is a transform:

Mϕf (x) = ϕ(x) · f (x).

168
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We are particularly interested in transforms that are linear. A transform T is
linear if

T [αf + βg] = αT (f ) + βT (g)

for any real constants α, β. In particular (taking α = β = 1),

T [f + g] = T (f ) + T (g)

and (taking β = 0)

T (αf ) = αT (f ).

We can most fruitfully study linear transformations that are given by integration.
The Laplace transform is defined by

L[f ](p) =
∫ ∞

0
e−pxf (x) dx for p > 0.

Notice that we begin with a function f of x, and the Laplace transform L pro-
duces a new function L[f ] of p. We sometimes write the Laplace transform of
f (x) as F(p). Notice that the Laplace transform is an improper integral; it exists
precisely when ∫ ∞

0
e−pxf (x) dx = lim

N→∞

∫ N

0
e−pxf (x) dx

exists.
Let us now calculate some Laplace transforms:

e.g.EXAMPLE 6.1
Calculate the Laplace transform of xn.

SOLUTION

L[xn] =
∫ ∞

0
e−pxxn dx

(parts)= −xne−px

p

∣∣∣∣∞
0

+ n

p

∫ ∞

0
e−pxxn−1 dx

= n

p
L[xn−1]

= n

p

(
n − 1

p

)
L[xn−2]
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Table 6.1

Function f Laplace transform F

f (x) ≡ 1 F(p) = ∫∞
0 e−px dx = 1

p

f (x) = x F(p) = ∫∞
0 e−pxx dx = 1

p2

f (x) = xn F (p) = ∫∞
0 e−pxxn dx = n!

pn+1

f (x) = eax F (p) = ∫∞
0 e−pxeax dx = 1

p−a

f (x) = sin ax F(p) = ∫∞
0 e−px sin ax dx = a

p2+a2

f (x) = cos ax F(p) = ∫∞
0 e−px cos ax dx = p

p2+a2

f (x) = sinh ax F(p) = ∫∞
0 e−px sinh ax dx = a

p2−a2

f (x) = cosh ax F(p) = ∫∞
0 e−px cosh ax dx = p

p2−a2

= · · · = n!
pn

L[1]

= n!
pn+1

.

You will find, as we have just seen, that integration by parts is eminently useful
in the calculation of Laplace transforms.

We shall not actually perform all the integrations for the Laplace transforms
in Table 6.1. We content ourselves with the third one, just to illustrate the idea.
You should definitely perform the others, just to get the feel of Laplace transform
calculations.

☞ You Try It: Calculate the Laplace transform of sin ax.

It may be noted that the Laplace transform is a linear operator. Thus Laplace
transforms of some compound functions may be readily calculated from the table
just given:

L(5x3 − 2ex] = 5 · 3!
p4

− 2

p − 1
and

L(4 sin 2x + 6x] = 4 · 2

p2 + 22
+ 6

p2
.
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6.2 Applications to Differential Equations
The key to our use of Laplace transform theory in the subject of differential
equations is the way that L treats derivatives. Let us calculate

L[y′] =
∫ ∞

0
e−pxy′(x) dx

(parts)= −ye−px

∣∣∣∣∞
0

+ p

∫ ∞

0
e−pxy dx

= −y(0) + p · L[y].
In summary,

L[y′] = p · L[y] − y(0). (1)

Likewise,

L[y′′] = L[(y′)′] = p · L[y′] − y′(0)

= p
{
p · L[y] − y(0)

}− y′(0)

= p2 · L[y] − py(0) − y′(0). (2)

Now let us examine the differential equation

y′′ + ay′ + by = f (x), (3)

with the initial conditions y(0) = y0 and y′(0) = y1. Here a and b are real
constants. We apply the Laplace transform L to both sides of (3), of course using
the linearity of L. The result is

L[y′′] + aL[y′] + bL[y] = L[f ].
Writing out what each term is, we find that

p2 · L[y] − py(0) − y′(0) + a
{
p · L[y] − y(0)

}+ bL[y] = L[f ].
Now we can plug in what y(0) and y′(0) are. We may also gather like terms
together. The result is{

p2 + ap + b
}
L[y] = (p + a)y0 + y1 + L[f ]

or

L[y] = (p + a)y0 + y1 + L[f ]
p2 + ap + b

. (4)
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What we see here is a remarkable thing: The Laplace transform changes solv-
ing a differential equation from a rather complicated calculus problem to a simple
algebra problem. The only thing that remains, in order to find an explicit solution
to the original differential equation (3), is to find the inverse Laplace transform
of the right-hand side of (4). In practice we will find that we can often perform
this operation in a straightforward fashion. The following examples will illustrate
the idea.

e.g. EXAMPLE 6.2
Use the Laplace transform to solve the differential equation

y′′ + 4y = 4x (5)

with initial conditions y(0) = 1 and y′(0) = 5.

SOLUTION
We proceed mechanically, by applying the Laplace transform to both sides of
(5). Thus

L[y′′] + L[4y] = L[4x].
We can use our various Laplace transform formulas to write this out more

explicitly:

{p2L[y] − py(0) − y′(0)} + 4L[y] = 4

p2

or

p2L[y] − p · 1 − 5 + 4L[y] = 4

p2

or

(p2 + 4)L[y] = p + 5 + 4

p2
.

It is convenient to write this as

L[y] = p

p2 + 4
+ 5

p2 + 4
+ 4

p2 · (p2 + 4)

= p

p2 + 4
+ 5

p2 + 4
+
[

1

p2
− 1

p2 + 4

]
,
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where we have used a partial fractions decomposition in the last step. Simplify-
ing, we have

L[y] = p

p2 + 4
+ 4

p2 + 4
+ 1

p2
.

Referring to our table of Laplace transforms, we may now deduce what y

must be:

L[y] = L[cos 2x] + L[2 sin 2x] + L[x] = L[cos 2x + 2 sin 2x + x].
Now it is known that the Laplace transform is one-to-one: if L[f ] = L[g],

then f = g. Using this important property, we deduce then that

y = cos 2x + 2 sin 2x + x,

and this is the solution of our initial value problem.

A useful general property of the Laplace transform concerns its interaction with
translations. Indeed, we have

L[eaxf (x)] = F(p − a). (6)

To see this, we calculate

L[eaxf (x)] =
∫ ∞

0
e−pxeaxf (x) dx

=
∫ ∞

0
e−(p−a)xf (x) dx

= F(p − a).

We frequently find it useful to use the notation L−1 to denote the inverse
operation to the Laplace transform.1 For example, since

L[x2] = 2!
p3

,

we may write

L−1
[

2!
p3

]
= x2.

1We tacitly use here the fact that the Laplace transform L is one-to-one: if L[f ] = L[g], then f = g. Thus L is
invertible on its image. We are able to verify this assertion empirically through our calculations; the general result
is proved in a more advanced treatment.
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Since

L[sin x − e2x] = 1

p2 + 1
− 1

p − 2
,

we may write

L−1
[

1

p2 + 1
− 1

p − 2

]
= sin x − e2x.

e.g. EXAMPLE 6.3
Since

L[sin bx] = b

p2 + b2
,

we conclude that

L[eax sin bx] = b

(p − a)2 + b2
.

Since

L−1
[

1

p2

]
= x,

we conclude that

L−1
[

1

(p − a)2

]
= eaxx.

e.g. EXAMPLE 6.4
Use the Laplace transform to solve the differential equation

y′′ + 2y′ + 5y = 3e−x sin x (7)

with initial conditions y(0) = 0 and y′(0) = 3.

SOLUTION
We calculate the Laplace transform of both sides, using our new formula (6) on
the right-hand side, to obtain{
p2L[y] − py(0) − y′(0)

}
+ 2 {pL[y] − y(0)} + 5L[y] = 3 · 1

(p + 1)2 + 1
.

Plugging in the initial conditions, and organizing like terms, we find that

(p2 + 2p + 5)L[y] = 3 + 3

(p + 1)2 + 1
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or

L[y] = 3

p2 + 2p + 5
+ 3

(p2 + 2p + 2)(p2 + 2p + 5)

= 3

p2 + 2p + 5
+ 1

p2 + 2p + 2
− 1

p2 + 2p + 5

= 2

(p + 1)2 + 4
+ 1

(p + 1)2 + 1
.

We see therefore that

y = e−x sin 2x + e−x sin x.

This is the solution of our initial value problem.

You Try It: Use the Laplace transform to solve the differential equation

y′′ + y′ + y = ex.

Math Note: Since we know how to calculate the Laplace transform of the deriva-
tive of a function, it is natural also to consider the Laplace transform for the
antiderivative of a function. Derive a suitable formula.

6.3 Derivatives and Integrals of
Laplace Transforms

In some contexts it is useful to calculate the derivative of the Laplace transform of
a function (when the corresponding integral make sense). For instance, consider

F(p) =
∫ ∞

0
e−pxf (x) dx.

Then

d

dp
F(p) = d

dp

∫ ∞

0
e−pxf (x) dx

=
∫ ∞

0

d

dp
e−pxf (x) dx

=
∫ ∞

0
e−px{−xf (x)} dx = L[−xf (x)](p).
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We see that the derivative2 of F(p) is the Laplace transform of −xf (x). More
generally, the same calculation shows us that

d2

dp2
F(p) = L[x2f (x)](p)

and

dj

dpj
F (p) = L[(−1)j xjf (x)](p).

e.g. EXAMPLE 6.5
Calculate

L[x sin ax].

SOLUTION
We have

L[x sinax]=−L[−x sinax]=− d

dp
L[sinax]=− d

dp

(
a

p2+a2

)
= 2ap

(p2+a2)2
.

e.g. EXAMPLE 6.6
Calculate the Laplace transform of

√
x.

SOLUTION
This calculation actually involves some tricky integration. We first note that

L[√x] = L[x1/2] = −L[−x · x−1/2] = − d

dp
L[x−1/2]. (1)

Thus we must find the Laplace transform of x−1/2.
Now

L[x−1/2] =
∫ ∞

0
e−pxx−1/2 dx.

The change of variables px = t yields

= p−1/2
∫ ∞

0
e−t t−1/2 dt.

2The passage of the derivative under the integral sign in this calculation requires advanced ideas from real analysis
that we cannot treat here—see [KRA2].
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The further change of variables t = s2 gives the integral

L[x−1/2] = 2p−1/2
∫ ∞

0
e−s2

ds. (2)

Now we must evaluate the integral I = ∫∞
0 e−s2

ds. Observe that

I · I =
∫ ∞

0
e−s2

ds ·
∫ ∞

0
e−u2

du =
∫ ∞

0

∫ π/2

0
e−r2 · r dθdr.

Here we have introduced polar coordinates in the standard way.
Now the last integral is easily evaluated and we find that

I 2 = π

4
,

hence I = √
π/2. Thus L[x−1/2](p) = 2p−1/2{√π/2} = √

π/p. Finally,

L[√x] = − d

dp

√
π

p
= 1

2p

√
π

p
.

We now derive some additional formulas that will be useful in solving differ-
ential equations. We let y = f (x) be our function and Y = L[f ] be its Laplace
transform. Then

L[xy] = − d

dp
L[y] = −dY

dp
. (3)

Also

L[xy′] = − d

dp
L[y′] = − d

dp
[pY − y(0)] = − d

dp
[pY ] (4)

and

L[xy′′] = − d

dp
L[y′′] = − d

dp
[p2Y − py(0) − y′(0)] = − d

dp
[p2Y − py(0)].

(5)

e.g.EXAMPLE 6.7
Use the Laplace transform to analyze Bessel’s equation

xy′′ + y′ + xy = 0

with the single initial condition y(0) = 1.
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SOLUTION
Apply the Laplace transform to both sides of the equation. Thus

L[xy′′] + L[y′] + L[xy] = L[0] = 0.

We can apply our new formulas (5) and (3) to the first and third terms on the
left. And of course we apply the usual form for the Laplace transform of the
derivative to the second term on the left. The result is

− d

dp
[p2Y − p] + {pY − 1} +

{
−1 − dY

dp

}
= 0.

We may simplify this equation to

(p2 + 1)
dY

dp
= −pY.

This is a new differential equation, and we may solve it by separation of
variables. Now

dY

Y
= − p dp

p2 + 1
,

so

ln Y = −1

2
ln(p2 + 1) + C.

Exponentiating both sides gives

Y = D · 1√
p2 + 1

.

It is convenient (with a view to calculating the inverse Laplace transform) to
write this solution as

Y = D

p
·
(

1 + 1

p2

)−1/2

. (6)

Recall the binomial expansion

(1 + z)a = 1 + az + a(a − 1)

2! + a(a − 1)(a − 2)

3!
+ · · · + a(a − 1) · · · (a − n + 1)

n! + · · · .
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We apply this formula to the second term on the right of (6). Thus

Y = D

p
·
[

1 − 1

2
· 1

p2
+ 1

2! · 1

2
· 3

2
· 1

p4
− 1

3! · 1

2
· 3

2
· 5

2
· 1

p6

+ · · · + 1 · 3 · 5 · · · (2n − 1)

2nn!
(−1)n

p2n
+ · · ·

]

= D ·
∞∑

j=0

(2j)!
22j (j !)2

· (−1)j

p2j+1
.

The good news is that we can now calculate L−1 of Y (thus obtaining y)
by just calculating the inverse Laplace transform of each term of this series.
The result is

y(x) = D ·
∞∑

j=0

(−1)j

22j (j !)2
· x2j

= D ·
(

1 − x2

22
+ x4

22 · 42
− x6

22 · 42 · 62
+ · · ·

)
.

Since y(0) = 1 (the initial condition), we see that D = 1 and

y(x) = 1 − x2

22
+ x4

22 · 42
− x6

22 · 42 · 62
+ · · · .

The series we have just derived defines the celebrated and important Bessel
function J0. We have learned that the Laplace transform of J0 is 1/

√
p2 + 1.

You Try It: Use the Laplace transform to solve the differential equation

xy′′ − xy = cos x.

You Try It: Use the Laplace transform to solve the initial value problem

xy′′ + xy = 0, y(0) = 1, y′(0) = 0.

It is also a matter of some interest to integrate the Laplace transform. We can
anticipate how this will go by running the differentiation formulas in reverse.
Our main result is

L

[
f (x)

x

]
=
∫ ∞

p

F (s) ds. (7)
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In fact ∫ ∞

p

F (s) ds =
∫ ∞

p

[∫ ∞

0
e−sxf (x) dx

]
ds

=
∫ ∞

0
f (x)

∫ ∞

p

e−sx dsdx

=
∫ ∞

0
f (x)

[
e−sx

−x

]∞

p

dx

=
∫ ∞

0
f (x) · e−px

x
dx

=
∫ ∞

0

[
f (x)

x

]
· e−px dx

= L

[
f (x)

x

]
.

e.g. EXAMPLE 6.8
Use the fact that L[sin x] = 1/(p2 + 1) to calculate

∫∞
0 (sin x)/x dx.

SOLUTION
By formula (7) (with f (x) = sin x),∫ ∞

0

sin x

x
dx =

∫ ∞

0

dp

p2 + 1
= arctan p

∣∣∣∣∞
0

= π

2
.

We conclude this section by summarizing the chief properties of the Laplace
transform in Table 6.2. The last property listed concerns convolution, and we
shall treat that topic in the next section.

6.4 Convolutions
An interesting question, which occurs frequently with the use of the Laplace trans-
form, is this: Let f and g be functions and F and G their Laplace transforms;
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Table 6.2 Properties of the Laplace transform

L[αf (x) + βg(x)] = αF(p) + βG(p)

L[eaxf (x)] = F(p − a)

L[f ′(x)] = pF(p) − f (0)

L[f ′′(x)] = p2F(p) − pf (0) − f ′(0)

L

[∫ x

0
f (t) dt

]
= F(p)

p

L[−xf (x)] = F ′(p)

L[(−1)nxnf (x)] = F(n)(p)

L

[
f (x)

x

]
=
∫ ∞
p

F(p) dp

L

[∫ x

0
f (x − t)g(t) dt

]
= F(p)G(p)

what is L−1[F · G]? To discover the answer, we write

F(p) · G(p) =
[∫ ∞

0
e−psf (s) ds

]
·
[∫ ∞

0
e−ptf (t) dt

]

=
∫ ∞

0

∫ ∞

0
e−p(s+t)f (s)g(t) dsdt

=
∫ ∞

0

[∫ ∞

0
e−p(s+t)f (s) ds

]
g(t) dt.

Now we perform the change of variable s = x − t in the inner integral.
The result is

F(p) · G(p) =
∫ ∞

0

[∫ ∞

t

e−pxf (x − t) dx

]
g(t) dt

=
∫ ∞

0

∫ ∞

t

e−pxf (x − t)g(t) dxdt.
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Reversing the order of integration, we may finally write

F(p) · G(p) =
∫ ∞

0

[∫ x

0
e−pxf (x − t)g(t) dt

]
dx

=
∫ ∞

0
e−px

[∫ x

0
f (x − t)g(t) dt

]
dx

= L

[∫ x

0
f (x − t)g(t) dt

]
.

We call the expression
∫ x

0 f (x − t)g(t) dt the convolution of f and g. Many
texts write

f ∗ g(x) =
∫ x

0
f (x − t)g(t) dt. (1)

Our calculation shows that

L[f ∗ g](p) = F · G = L[f ] · L[g].
The convolution formula is particularly useful in calculating inverse Laplace

transforms.

e.g. EXAMPLE 6.9
Calculate

L−1
[

1

p2(p2 + 1)

]
.

SOLUTION
We write

L−1
[

1

p2(p2 + 1)

]
= L−1

[
1

p2
· 1

p2 + 1

]
=
∫ x

0
(x − t) · sin t dt.

Notice that we have recognized that 1/p2 is the Laplace transform of x and
1/(p2 + 1) is the Laplace transform of sin x, and then applied the convolution
result.

Now the last integral is easily evaluated (just integrate by parts) and seen to
equal

x − sin x.
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We have thus discovered, rather painlessly, that

L−1
[

1

p2(p2 + 1)

]
= x − sin x.

Math Note: All of Fourier and harmonic analysis has versions of the convo-
lution equation that we just described. As an example, suppose that f and g are
functions on the interval [−π, π]. Define

f ∗ g(x) =
∫ π

−π

f (x − t)g(t) dt,

where arithmetic is taken to be modulo 2π as usual. Then we can calculate the
Fourier coefficients of f ∗ g and it turns out that they are, in a suitable sense,
a product of the Fourier coefficients of f and g. We leave the details for you.

An entire area of mathematics is devoted to the study of integral equations of
the form

f (x) = y(x) +
∫ x

0
k(x − t)y(t) dt. (2)

Here f is a given forcing function, and k is a given function known as the kernel.
Usually k is a mathematical model for the physical process being studied. The
objective is to solve for y. As you can see, the integral equation involves a convo-
lution. And, not surprisingly, the Laplace transform comes to our aid in unraveling
the equation.

In fact we apply the Laplace transform to both sides of (2). The result is

L[f ] = L[y] + L[k] · L[y],
hence

L[y] = L[f ]
1 + L[k] .

Let us look at an example in which this paradigm occurs.

e.g.EXAMPLE 6.10
Use the Laplace transform to solve the integral equation

y(x) = x3 +
∫ x

0
sin(x − t)y(t) dt.
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SOLUTION
We apply the Laplace transform to both sides:

L[y] = L[x3] + L[sin x] · L[y].
Solving for L[y], we see that

L[y] = L[x3]
1 − L[sin x] = 3!/p4

1 − 1/(p2 + 1)
.

We may simplify the right-hand side to obtain

L[y] = 3!
p4

+ 3!
p6

.

Of course it is easy to determine the inverse Laplace transform of the right-hand
side. The result is

y(x) = x3 + x5

20
.

☞ You Try It: Use the Laplace transform to solve the integral equation

y(x) = x2 +
∫ x

0
cos(x − t)y(t) dt.

We now study an old problem from mechanics that goes back to Niels Henrik
Abel (1802–1829). Imagine a wire bent into a smooth curve (Fig. 6.1). The curve
terminates at the origin. Imagine a bead sliding from the top of the wire, without
friction, down to the origin. The only force acting on the bead is gravity, depending

x

y

(u,v)

(x,y)

s

m

y = y(x)

Fig. 6.1.



CHAPTER 6 Laplace Transforms 185

only on the weight of the bead. Say that the wire is the graph of a function y = y(x).
Then the total time for the descent of the bead is some number T (y) that depends
on the shape of the wire and on the initial height y. Abel’s problem is to run the
process in reverse: Suppose that we are given a function T . Then find the shape y

of a wire that will result in this time-of-descent function T .
What is interesting about this problem, from the point of view of the present

section, is that its mathematical formulation leads to an integral equation of the sort
that we have just been discussing. And we will be able to solve it using the Laplace
transform.

We begin our analysis with the principle of conservation of energy, namely,

1

2
m

(
ds

dt

)2

= m · g · (y − v).

In this equation, m is the mass of the bead, ds/dt is its velocity, and g is the
acceleration due to gravity. We use (u, v) as the coordinates of any intermediate
point on the curve. The expression on the left-hand side is the standard one from
physics for kinetic energy. And the expression on the right is the potential energy.

We may rewrite the last equation as

−ds

dt
= √

2g(y − v)

or

dt = − ds√
2g(y − v)

.

Integrating from v = y to v = 0 yields

T (y) =
∫ v=0

v=y

dt =
∫ v=y

v=0

ds√
2g(y − v)

= 1√
2g

∫ y

0

s′(v) dv√
y − v

. (3)

Now we know from calculus how to calculate the length of a curve:

s = s(y) =
∫ y

0

√
1 +

(
dx

dy

)2

dy,

hence

f (y) = s′(y) =
√

1 +
(

dx

dy

)2

. (4)

Substituting this last expression into (3), we find that

T (y) = 1√
2g

∫ y

0

f (v) dv√
y − v

. (5)
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This formula, in principle, allows us to calculate the total descent time T (y) when-
ever the curve y is given. From the point of view of Abel’s problem, the function
T (y) is given, and we wish to find y. We think of f (y) as the unknown. The
equation (5) is called Abel’s integral equation.

We note that the integral on the right-hand side ofAbel’s equation is a convolution
(of the functions y−1/2 and f ). Thus when we apply the Laplace transform to (5)

we obtain

L[T (y)] = 1√
2g

L[y−1/2] · L[f (y)].

Now we know from Example 6.6 that L[y−1/2] = √
π/p. Hence the last

equation may be written as

L[f (y)] = √
2g · L[T (y)]√

π/p
=
√

2g

π
· p1/2 · L[T (y)]. (6)

When T (y) is given, then the right-hand side of (6) is completely known, so we
can then determine L[f (y)] and hence y (by solving the differential equation (4)).

e.g. EXAMPLE 6.11
Analyze the case of Abel’s mechanical problem when T (y) = T0, a constant.

SOLUTION
Our hypothesis means that the time of descent is independent of where on the
curve we release the bead. A curve with this property (if in fact one exists) is
called a tautochrone. In this case the equation (6) becomes

L[f (y)] =
√

2g

π
p1/2L[T0] =

√
2g

π
p1/2 T0

p
= b1/2 ·

√
π

p
,

where we have used the shorthand b = 2gT 2
0 /π2. Now L−1[√π/p] = y−1/2,

hence we find that

f (y) =
√

b

y
. (7)

Now the differential equation (4) tells us that

1 +
(

dx

dy

)2

= b

y
,
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hence

x =
∫ √

b − y

y
dy.

Using the change of variable y = b sin2 φ, we obtain

x = 2b

∫
cos2 φ dφ

= b

∫
(1 + cos 2φ) dφ

= b

2
(2φ + sin 2φ) + C.

In conclusion,

x = b

2
(2φ + sin 2φ) + C and y = b

2
(1 − cos 2φ). (8)

The curve must, by the initial mandate, pass through the origin. Hence C = 0.
If we put a = b/2 and θ = 2φ, then (8) takes the simpler form

x = a(θ + sin θ) and y = a(1 − cos θ).

These are the parametric equations of a cycloid (Fig. 6.2). A cycloid is a
curve generated by a fixed point on the edge of a disc of radius a rolling along
the x-axis. See Fig. 6.3. We invite you to work from this synthetic definition to
the parametric equations that we just enunciated.

Fig. 6.2.
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x

y

Fig. 6.3.

Fig. 6.4.

Math Note: We see that the tautochrone turns out to be a cycloid. This problem
and its solution is one of the great triumphs of modern mechanics. An additional
very interesting property of this curve is that it is the brachistochrone. That means
that, given two points A and B in space, the curve connecting them down which a
bead will slide the fastest is the cycloid (Fig. 6.4). This last assertion was proved
by Isaac Newton, who read the problem as posed by Bernoulli in a periodical.
Newton had just come home from a long day at the British Mint (where he served
as Director after he gave up his scientific work). He solved the problem in a few
hours, and submitted his solution anonymously. But Bernoulli said he knew it was
Newton; he “recognized the lion by his claw.”
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6.5 The Unit Step and Impulse Functions
In this section our goal is to apply the formula

L[f ∗ g] = L[f ] · L[g]
to study the response of an electrical or mechanical system.

Any physical system that responds to a stimulus can be thought of as a device (or
black box) that transforms an input function (the stimulus) into an output function
(the response). If we assume that all initial conditions are zero at the moment t = 0
when the input f begins to act, then we may hope to solve the resulting differential
equation by application of the Laplace transform.

To be more specific, let us consider solutions of the equation

y′′ + ay′ + by = f

satisfying the initial conditions y(0) = 0 and y′(0) = 0. Notice that, since the
equation is inhomogeneous, these zero initial conditions cannot force the solution
to be identically zero. The input f can be thought of as an impressed external force
F or electromotive force E that begins to act at time t = 0—just as we discussed
when we considered forced vibrations.

When the input function happens to be the unit step function

u(t) =
{

0 if t < 0

1 if t ≥ 0,

then the solution y(t) is denoted by A(t) and is called the indicial response. That
is to say,

A′′ + aA′ + bA = u. (1)

Now, applying the Laplace transform to both sides of (1), and using our standard
formulas for the Laplace transforms of derivatives, we find that

p2L[A] + apL[A] + bL[A] = L[u] = 1

p
.

So we may solve for L[A] and obtain that

L[A] = 1

p
· 1

p2 + ap + b
= 1

p
· 1

z(p)
, (2)

where z(p) = p2 + ap + b.
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Note that we have just been examining the special case of our differential
equation with a step function on the right-hand side. Now let us consider the
equation in its general form (with an arbitrary external force function):

y′′ + ay′ + by = f.

Applying the Laplace transform to both sides (and using our zero initial conditions)
gives

p2L[y] + apL[y] + bL[y] = L[f ]
or

L[y] · z(p) = L[f ],
so

L[y] = L[f ]
z(p)

. (3)

We divide both sides of (3) by p and use (2). The result is

1

p
· L[y] = 1

pz(p)
· L[f ] = L[A] · L[f ].

This suggests the use of the convolution theorem:

1

p
· L[y] = L[A ∗ f ].

As a result,

L[y] = p · L

[∫ t

0
A(t − τ)f (τ) dτ

]

= L

[
d

dt

∫ t

0
A(t − τ)f (τ) dτ

]
.

Thus we finally obtain that

y(t) = d

dt

∫ t

0
A(t − τ)f (τ) dτ. (4)

What we see here is that, once we find the solution A of the differential equation
with a step function as an input, then we can obtain the solution for any other input
f by convolving A with f and then taking the derivative. With some effort, we
can rewrite the equation (4) in an even more appealing way.
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In fact we can go ahead and perform the differentiation in (4) to obtain

y(t) =
∫ t

0
A′(t − τ)f (τ) dτ + A(0)f (t). (5)

Alternatively, we can use a change of variable to write the convolution as∫ t

0
f (t − σ)A(σ) dσ.

This results in the formula

y(t) =
∫ t

0
f ′(t − σ)A(σ) dσ + f (0)A(t).

Changing variables back again, this gives

y(t) =
∫ t

0
A(t − τ)f ′(τ ) dτ + f (0)A(t).

We notice that the initial conditions force A(0) = 0 so our other formula (5)

becomes

y(t) =
∫ t

0
A′(t − τ)f (τ) dτ.

Either of these last two displayed formulas is commonly called the principle of
superposition. They allow us to represent a solution of our differential equation
for a general input function in terms of a solution for a step function.

e.g.EXAMPLE 6.12
Use the principle of superposition to solve the equation

y′′ + y′ − 6y = 2e3t

with initial conditions y(0) = 0, y′(0) = 0.

SOLUTION
We first observe that

z(p) = p2 + p − 6.

Hence

L[A] = 1

p(p2 + p − 6)
.
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Now it is a simple matter to apply partial fractions and elementary Laplace
transform inversion to obtain

A(t) = −1
6 + 1

15e−3t + 1
10e2t .

Now f (t) = 2e3t , f ′(t) = 6e3t , and f (0) = 2. Thus our first superposition
formula gives

y(t) =
∫ t

0

[
−1

6 + 1
15e−3(t−τ) + 1

10e2(t−τ)
]

dτ

+ 2
[
−1

6 + 1
15e−3t + 1

10e2t
]

= 1
3e3t + 1

15e−3t − 2
5e2t .

We invite you to confirm that this is indeed a solution to our initial value
problem.

☞ You Try It: Use the principle of superposition to solve the equation

y′′ + y′ + y = 2 cos t

with initial conditions y(0) = 1, y′(0) = 0.

We can use the second principle of superposition, rather than the first, to solve
the differential equation. The process is expedited if we first rewrite the equation
in terms of an impulse (rather than a step) function.

What is an impulse function? The physicists think of an impulse function as
one that takes the value 0 at all points except the origin; at the origin the impulse
function takes the value +∞. See Fig. 6.5. In practice, we mathematicians think
of an impulse function as a limit of functions

ϕε(x) =
{

1/ε if 0 ≤ x ≤ ε

0 if x > ε

as ε → 0+ (Fig. 6.6). Observe that, for any ε > 0,
∫∞

0 ϕε(x) dx = 1. It is
straightforward to calculate that

L[ϕε] = 1 − e−pε

pε

and hence that

lim
ε→0

L[ϕε] ≡ 1.
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impulse function

Fig. 6.5.

impulse function

approximate

1/

Fig. 6.6.

Thus we think of the impulse—intuitively—as an infinitely tall spike at the
origin with Laplace transform identically equal to 1. The mathematical justification
for the concept of the impulse was outlined in the previous paragraph. A truly
rigorous treatment of the impulse requires the theory of distributions (or generalized
functions) and we cannot cover it here. It is common to denote the impulse function
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by δ(t) (in honor of Paul Dirac (1902–1984), who developed the idea), and to call
it the “Dirac function” or “Dirac delta mass.” We have that

L[δ] ≡ 1.

In the special case that the input function for our differential equation is f (t) =
δ, then the solution y is called the impulsive response and denoted h(t). In this
circumstance we have

L[h] = 1

z(p)
,

hence

h(t) = L−1
[

1

z(p)

]
.

Now we know that

L[A] = 1

p
· 1

z(p)
= L[h]

p
.

As a result,

A(t) =
∫ t

0
h(τ) dτ.

But this last formula shows that A′(t) = h(t), so that our second superposition
formula becomes

y(t) =
∫ t

0
h(t − τ)f (τ) dτ. (6)

In summary, the solution of our differential equation with general input function f

is given by the convolution of the impulsive response function with f .

e.g. EXAMPLE 6.13
Solve the differential equation

y′′ + y′ − 6y = 2e3t

with initial conditions y(0) = 0 and y′(0) = 0 using the second of our
superposition formulas, as rewritten in (6).
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SOLUTION
We know that

h(t) = L−1
[

1

z(p)

]
= L−1

[
1

(p + 3)(p − 2)

]
= L−1

[
1
5

(
1

p − 2
− 1

p + 3

)]
= 1

5

(
e2t − e−3t

)
.

As a result,

y(t) =
∫ t

0

1
5

[
e2(t−τ) − e−3(t−τ)

]
2e3t dτ

= 1
3e3t + 1

15e−3t − 2
5e2t .

Of course this is the same solution that we obtained in the last example, using
the other superposition formula.

You Try It: Solve the differential equation

y′′ + y′ + y = 3 sin t

with initial conditions y(0) = 1 and y′(0) = 0 using the second of our superposition
formulas, as rewritten in (6).

Math Note: To form a more general view of the meaning of convolution, con-
sider a linear physical system in which the effect at the present moment of a small
stimulus g(τ) dτ at any past time τ is proportional to the size of the stimulus. We
further assume that the proportionality factor depends only on the elapsed time
t − τ , and thus has the form f (t − τ). The effect at the present time t is therefore

f (t − τ) · g(τ) dτ.

Since the system is linear, the total effect at the present time t due to the stimulus
acting throughout the entire past history of the system is obtained by adding these
separate effects, and this observation leads to the convolution integral∫ t

0
f (t − τ)g(τ ) dτ.
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The lower limit is 0 just because we assume that the stimulus started acting at time
t = 0, i.e., that g(τ) = 0 for all τ < 0. Convolution plays a vital role in the study
of wave motion, heat conduction, diffusion, and many other areas of mathematical
physics.

Convolutions are important throughout mathematical analysis because they can
be used to model translation-invariant processes. You learn more about this idea
when you take an advanced course in engineering mathematics, or in Fourier
analysis.

Exercises
1. Evaluate the Laplace transform integrals for the third, fourth, and fifth

entries in Table 6.1.

2. Without actually integrating, show that

(a) L[sinh ax] = a

p2 − a2

(b) L[cosh ax] = p

p2 − a2

3. Use the formulas given in the text to find the Laplace transform of each
of the following functions:
(a) 10
(b) x5 + cos 2x

(c) 2e3x − 4 sin 5x

(d) 4 sin x cos x + 2e−x

(e) x6 sin2 3x + x6 cos2 3x

4. Find the Laplace transforms of
(a) x5e−2x

(b) (1 − x2)e−x

(c) e3x cos 2x

5. Find the inverse Laplace transform of

(a)
6

(p + 2)2 + 9

(b)
12

(p + 3)4

(c)
p + 3

p2 + 2p + 5
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6. Solve each of the following differential equations with initial values using
the Laplace transform:
(a) y′ + y = e2x , y(0) = 0
(b) y′′ − 4y′ + 4y = 0, y(0) = 0 and y′(0) = 3
(c) y′′ + 2y′ + 2y = 2, y(0) = 0 and y′(0) = 1

7. Solve the initial value problem

y′ + 4y + 5
∫ x

0
ydx = e−x, y(0) = 0.

8. Calculate each of the following Laplace transforms:
(a) L[x2 sin ax]
(b) L[xex]

9. Solve each of the following integral equations:

(a) y(x) = 1 −
∫ x

0
(x − t)y(t) dt

(b) y(x) = ex

[
1 +

∫ x

0
e−t y(t) dt

]
10. Find the convolution of each of the following pairs of functions:

(a) 1, sin at

(b) eat , ebt for a �= b

11. Use the method of Laplace transforms to find the general solution of the
differential equation (Hint: Use the boundary conditions y(0) = A and
y′(0) = B to introduce the two undetermined constants that you need):

y′′ − 5y′ + 4y = 0.

12. Express this function using one or more step functions, and then calculate
the Laplace transform:

g(t) =
{

0 if 0 < t < 3

t − 1 if 3 ≤ t < ∞.
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CHAPTER

Numerical Methods

The presentation in this book, or in any standard introductory text on differential
equations, can be misleading. A casual reading might lead you to think that “most”
differential equations can be solved explicitly, with the solution given by a formula.
Such is not the case. Although it can be proved abstractly that almost any ordinary
differential equation has a solution—at least locally—it is in general quite difficult
to say in any explicit manner what the solution might be. It is sometimes possible
to say something qualitative about solutions. And we have also seen that certain
important equations that come from physics are fortuitously simple, and can be
attacked effectively. But the bottom line is that many of the equations that we
must solve for engineering or other applications simply do not have closed-form
solutions. Just as an instance, the equations that govern the shape of an airplane
wing cannot be solved explicitly. Yet we fly every day. How do we come to terms
with the intractability of differential equations?

The advent of high-speed digital computers has made it both feasible and, indeed,
easy to perform numerical approximation of solutions. The subject of the numerical
solution of differential equations is a highly developed one, and is applied daily
to problems in engineering, physics, biology, astronomy, and many other parts of
science. Solutions may generally be obtained to any desired degree of accuracy,
graphs drawn, and almost any necessary analysis performed.

198
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Not surprisingly—and like many of the other fundamental ideas related to
calculus—the basic techniques for the numerical solution of differential equations
go back to Newton and Euler. This is quite amazing, for these men had no notion
of the computing equipment that we have available today. Their insights were
quite prescient and powerful.

In the present chapter, we shall only introduce the most basic ideas in the
subject of numerical analysis of differential equations. We refer you to [GER],
[HIL], [ISK], [STA], and [TOD] for further development of the subject.

7.1 Introductory Remarks
When we create a numerical or discrete model for a differential equation, we make
several decisive replacements or substitutions. First, the derivatives in the equation
are replaced by differences (as in replacing the derivative by a difference quotient).
Second, the continuous variable x is replaced by a discrete variable. Third, the
real number line is replaced by a discrete set of values. Any type of approximation
argument involves some sort of loss of information; that is to say, there will always
be an error term. It is also the case that these numerical approximation techniques
can give rise to instability phenomena and other unpredictable behavior.

The practical significance of these remarks is that numerical methods should
never be used in isolation. Whenever possible, the user should also employ qualita-
tive techniques. Endeavor to determine whether the solution is bounded, periodic,
or stable. What are its asymptotics at infinity? How do the different solutions inter-
act with each other? In this way you are not using the computing machine blindly,
but are instead using the machine to aid and augment your understanding.

The spirit of the numerical method is this. Consider the simple differential
equation

y′ = y, y(0) = 1.

The initial condition tells us that the point (0, 1) lies on the graph of the solution
y. The equation itself tells us that, at that point, the slope of the solution is

y′ = y = 1.

Thus the graph will proceed to the right with slope 1. Let us assume that we shall
do our numerical calculation with mesh 0.1. So we proceed to the right to the
point (0.1, 1.1). This is the second point on our “approximate solution graph.”
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Fig. 7.1.

Now we return to the differential equation to obtain the slope of the solution at
this new point. It is

y′ = y = 1.1.

Thus, when we proceed to sketch our approximate solution graph to the right of
(0.1, 1.1), we draw a line segment of slope 1.1 to the point (0.2, 1.21), and so forth.
See Fig. 7.1.

Of course this is a very simple-minded example, and it is easy to imagine that
the approximate solution is diverging rather drastically and unpredictably with
each iteration of the method. In subsequent sections we shall learn techniques of
Euler (which formalize the method just described) and Runge–Kutta (which give
much better, and more reliable, results).

7.2 The Method of Euler
Consider an initial value problem of the form

y′ = f (x, y), y(x0) = y0.
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We may integrate from x0 to x1 = x0 + h to obtain

y(x1) − y(x0) =
∫ x1

x0

f (x, y) dx

or

y(x1) = y(x0) +
∫ x1

x0

f (x, y) dx.

Since the unknown function y occurs in the integrand on the right, we cannot
proceed unless we have some method of approximating the integral.

The Euler method is obtained from the most simple technique for approximating
the integral. Namely, we assume that the integrand does not vary much on the
interval [x0, x1], and therefore that a rather small error will result if we replace
f (x, y) by its value at the left endpoint. To wit, we put in place a partition a =
x0 < x1 < x2 < · · · < xk = b of the interval [a, b] under study. We set y0 = y(x0).
Now we take

y(x1) = y(x0) +
∫ x1

x0

f (x, y) dx

≈ y(x0) +
∫ x1

x0

f (x0, y0) dx

= y(x0) + h · f (x0, y0).

Based on this calculation, we simply define

y1 = y0 + h · f (x0, y0).

Continuing in this fashion, we set xk = xk−1 + h and define

yk+1 = yk + h · f (xk, yk).

Then the points (x0, y0), (x1, y1), . . . , (xk, yk), . . . are the points of our “approxi-
mate solution” to the differential equation. Figure 7.2 illustrates the exact solution,
the approximate solution, and how they might deviate.

It is sometimes convenient to measure the total relative error En at the nth
step; this quantity is defined to be

En = |y(xn) − yn|
|y(xn)| .

We usually express this quantity as a percentage, and we obtain thereby a comfort-
able way of measuring how well the numerical technique under consideration is
performing.
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Fig. 7.2.

e.g. EXAMPLE 7.1
Apply the Euler technique to the ordinary differential equation

y′ = x + y, y(0) = 1 (1)

using increments of size h = 0.2 and h = 0.1.

SOLUTION
We exhibit the calculations in Table 7.1. In the first line of this table, the initial
condition y(0) = 1 determines the slope y′ = x + y = 1.00. Since h = 0.2 and
y1 = y0+h·f (x0, y0), the next value is given by 1.00+0.2·(1.00) = 1.20. This
process is iterated in the succeeding lines. We shall retain five decimal places
in this and succeeding tables.

Table 7.1 Tabulated values for exact and numerical solutions to
equation (1) with h = 0.2

xn yn Exact En (%)

0.0 1.00000 1.00000 0.0
0.2 1.20000 1.24281 3.4
0.4 1.48000 1.58365 6.5
0.6 1.85600 2.04424 9.2
0.8 2.34720 2.65108 11.5
1.0 2.97664 3.43656 13.4
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Table 7.2 Tabulated values for exact and numerical solutions to
equation (1) with h = 0.1

xn yn Exact En (%)

0.0 1.00000 1.00000 0.0
0.1 1.10000 1.11034 0.9
0.2 1.28200 1.24281 1.8
0.3 1.36200 1.39972 2.7
0.4 1.52820 1.58365 3.5
0.5 1.72102 1.79744 4.3
0.6 1.94312 2.04424 4.9
0.7 2.19743 2.32751 5.6
0.8 2.48718 2.65108 6.2
0.9 2.81590 3.01921 6.7
1.0 3.18748 3.43656 7.2

For comparison purposes, we also record in Table 7.2 the tabulated values for
h = 0.1.

You Try It: Apply the Euler technique to the ordinary differential equation

y′ = 3x − y, y(0) = 2

using increments of size h = 0.1.

The displayed data make clear that reducing the step size will increase accuracy.
But the tradeoff is that significantly more computation is required. In the next
section we shall discuss errors, and in particular at what point there is no advantage
to reducing the step size.

Math Note: In calculus class you learned to approximate the value of a function
f at a point x + h by f (x) + h · f ′(x). For example, try approximating

√
4.1 by

letting f (x) = √
x, x = 4, and h = 0.1. How can you determine in advance the

size of the error in such a calculation?

7.3 The Error Term
The notion of error is central to any numerical technique. Numerical methods only
give approximate answers. In order for the approximate answer to be useful, we
must know how close to the true answer our approximate answer is. Since the
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whole reason why we went after an approximate answer in the first place was that
we had no method for finding the exact answer, this whole discussion raises tricky
questions. How do we get our hands on the error, and how do we estimate it? Any
time decimal approximations are used, there is a rounding-off procedure involved.
Round-off error is another critical phenomenon that we must examine.

e.g. EXAMPLE 7.2
Examine the differential equation

y′ = x + y, y(0) = 1 (1)

from the numerical point of view, and consider what happens if the step size h

is made too small.

SOLUTION
Suppose that we are working with a computer having ordinary precision—which
is eight decimal places. This means that all numerical answers are rounded to
eight places.

Let h = 10−10, a very small step size indeed (but one that could be required
for work in microtechnology). Let f (x, y) = x + y. Applying the Euler method
and computing the first step, we find that the computer yields

y1 = y0 + h · f (x0, y0) = 1 + 10−10 = 1.

The last equality may seem rather odd—in fact it appears to be false. But this
is how the computer will reason: it rounds to eight decimal places! The same
phenomenon will occur with the calculation of y2. In this situation, we see
therefore that the Euler method will produce a constant solution—namely, y ≡ 1.

The last example is to be taken quite seriously. It describes what would actually
happen if you had a canned piece of software to implement Euler’s method, and you
actually used it on a computer running in the most standard and familiar computing
environment. If you are not aware of the dangers of round-off error, and why such
errors occur, then you will be a very confused scientist indeed. One way to address
the problem is with double precision, which gives 16-place decimal accuracy.
Another way is to use a symbol manipulation program like Mathematica or
Maple (in which one can preset any number of decimal places of accuracy).

In the present book, we cannot go very deeply into the subject of round-off
error. What is most feasible for us is to acknowledge that round-off error must be
dealt with in advance, and we shall assume that we have set up our problem so
that round-off error is negligible. We shall instead concentrate our discussions
on discretization error, which is a problem less contingent on artifacts of the
computing environment and more central to the theory.
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Math Note: How do we, in practice, check to see whether h is too small, and thus
causing round-off error? One commonly used technique is to redo the calculation
in double precision (on a computer using one of the standard software packages,
this would mean 16-place decimal accuracy instead of the usual 8-place accuracy).
If the answer seems to change substantially, then some round-off error is probably
present in the regular precision (8-place accuracy) calculation.

The local discretization error at the nth step is defined to be εn = y(xn) − yn.
Here y(xn) is the exact value at xn of the solution of the differential equation, and
yn is the Euler approximation. In fact we may use Taylor’s formula to obtain a
useful estimate on this error term. To wit, we may write

y(x0 + h) = y0 + h · y′(x0) + h2

2
· y′′(ξ),

for some value of ξ between x0 and x. But we know, from the differential equation,
that

y′(x0) = f (x0, y0).

Thus

y(x0 + h) = y0 + h · f (x0, y0) + h2

2
· y′′(ξ),

so that

y(x1) = y(x0 + h) = y0 + h · f (x0, y0) + h2

2
· y′′(ξ) = y1 + h2

2
· y′′(ξ).

We may conclude that

ε1 = h2

2
· y′′(ξ).

Usually on the interval [x0, xn] we may see on a priori grounds that y′′ is bounded
by some constant M . Thus our error estimate takes the form

|ε1| ≤ Mh2

2
.

More generally, the same calculation shows that

|εj | ≤ Mh2

2
.

Such an estimate shows us directly, for instance, that if we decrease the step size
from h to h/2, then the accuracy is increased by a factor of 4.
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Unfortunately, in practice things are not as simple as the last paragraph might
suggest. For an error is made at each step of the Euler method—or of any numer-
ical method—so we must consider the total discretization error. This is just the
aggregate of all the errors that occur at all steps of the approximation process.

To get a rough estimate of this quantity, we notice that our Euler scheme iterates
in n steps, from x0 to xn, in increments of length h. So h = [xn − x0]/n or
n = [xn −x0]/h. If we assume that the errors accumulate without any cancellation,
then the aggregate error is bounded by

|En| ≤ n · Mh2

2
= (xn − x0) · Mh

2
≡ C · h.

Here C = (xn − x0) · M , and (xn − x0) is of course the length of the interval under
study. Thus, for this problem, C is a universal constant. We see that, for Euler’s
method, the total discretization error is bounded by a constant times the step size.

e.g. EXAMPLE 7.3
Estimate the discretization error, for a step size of 0.2 and for a step size of 0.1,
for the differential equation with initial data given by

y′ = x + y, y(0) = 1. (2)

SOLUTION
In order to get the maximum information about the error, we are going to proceed
in a somewhat artificial fashion. Namely, we will use the fact that we can solve
the initial value problem explicitly: the solution is given by y = 2ex − x − 1.
Thus y′′ = 2ex . Thus, on the interval [0, 1],

|y′′| ≤ 2e1 = 2e.

Hence

|εj | ≤ Mh2

2
≤ 2eh2

2
= eh2

for each j . The total discretization error is then bounded (since we calculate this
error by summing about 1/h terms) by

|En| ≤ eh. (3)

Referring to Table 7.1 in Section 7.2 for incrementing by h = 0.2, we see that
the total discretization error at x = 1 is actually equal to 0.46 (rounded to two
decimal places). [We calculate this error from the table by subtracting yn from
the exact solution.] The error bound given by (3) is e · (0.2) ≈ 0.54. Of course
the actual error is less than this somewhat crude bound. With h = 0.1, the actual
error from Table 7.2 is 0.25 while the error bound is e · (0.1) ≈ 0.27.
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You Try It: Estimate the discretization error, for a step size of 0.1, for the
differential equation with initial data given by

y′ = 3x − y, y(1) = 2.

Math Note: In practice, we shall not be able to solve the differential equation
being studied. That is, after all, why we are using numerical techniques and a
computer. So how do we, in practice, determine when h is small enough to achieve
the accuracy we desire? A rough-and-ready method, which is used commonly in
the field, is this: Do the calculation for a given h, then for h/2, then for h/4, and so
forth. When the distance between two successive calculations is within the desired
tolerance for the problem, then it is quite likely that they both are also within the
desired tolerance of the exact solution.

7.4 An Improved Euler Method
We improve the Euler method by following the logical scheme that we employed
when learning numerical methods of integration in calculus class. Namely, our first
method of numerical integration was to approximate a desired integral by a sum of
areas of rectangles. [This is analogous to the Euler method, where we approximate
the integrand by the constant value at its left endpoint.] Next, in integration theory,
we improved our calculations by approximating by a sum of areas of trapezoids.
That amounts to averaging the values at the two endpoints. This is the philosophy
that we now employ.

Recall that our old equation is

y1 = y0 +
∫ x1

x0

f (x, y) dx.

Our idea for Euler’s method was to replace the integrand by f (x0, y0). This
generated the iterative scheme of the last section. Now we propose to instead
replace the integrand with [f (x0, y0) + f (x1, y(x1))]/2. Thus we find that

y1 = y0 + h

2
[f (x0, y0) + f (x1, y(x1))]. (1)

The trouble with this proposed equation is that y(x1) is unknown—just because
we do not know the exact solution y. What we can do instead is to replace y(x1)

by its approximate value as found by the Euler method. Denote this new value by
z1 = y0 + h · f (x0, y0). Then (1) becomes

y1 = y0 + h

2
· [f (x0, y0) + f (x1, z1)].
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You should pause to verify that each quantity on the right-hand side can be calcu-
lated from information that we have—without knowledge of the exact solution of
the differential equation. More generally, our iterative scheme is

yj+1 = yj + h

2
· [f (xj , yj ) + f (xj+1, zj+1)],

where

zj+1 = yj + h · f (xj , yj )

and j = 0, 1, 2, . . . .
This new method, usually called the improved Euler method or Heun’s method,

first predicts and then corrects an estimate for yj . It is an example of a class
of numerical techniques called predictor–corrector methods. It is possible, using
subtle Taylor series arguments, to show that the local discretization error is

εj = −y′′′(ξ) · h3

12
,

for some value of ξ between x0 and xn. Thus, in particular, the total discretization
error is proportional to h2 (instead of h, as before), so we expect more accuracy for
the same step size. Figure 7.3 gives a way to visualize the improved Euler method.
First, the point at (x1, z1) is predicted using the original Euler method, then this
point is used to estimate the slope of the solution curve at x1. This result is then
averaged with the original slope estimate at (x0, y0) to make a better prediction of
the solution—namely, (x1, y1).

e.g. EXAMPLE 7.4
Apply the improved Euler method to the differential equation

y′ = x + y, y(0) = 1 (2)

with step size 0.2 and gauge the improvement in accuracy over the ordinary
Euler method used in Examples 7.1 and 7.3.

SOLUTION
We see that

zk+1 = yk + 0.2 · f (xk, yk) = yk + 0.2(xk + yk)

and

yk+1 = yk + 0.1[(xk + yk) + (xk+1 + zk+1].
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We begin the calculation by setting k = 0 and using the initial values x0 =
0.0000, y0 = 1.0000. Thus

z1 = 1.0000 + 0.2(0.0000 + 1.0000) = 1.2000

and

y1 = 1.0000 + 0.1[0.0000 + 1.0000) + (0.2 + 1.2000)] = 1.2400.

We continue this process and obtain the values shown in Table 7.3.

Table 7.3 Tabulated values for exact and numerical solutions to
(2) with h = 0.2 using the improved Euler method

xn yn Exact En (%)

0.0 1.00000 1.00000 0.00
0.2 1.24000 1.24281 0.23
0.4 1.57680 1.58365 0.43
0.6 2.03170 2.04424 0.61
0.8 2.63067 2.65108 0.77
1.0 3.40542 3.43656 0.91
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Table 7.4 Tabulated values for exact and numerical solutions to
(2) with h = 0.1 using the improved Euler method

xn yn Exact En (%)

0.0 1.00000 1.00000 0.0
0.1 1.11000 1.11034 0.0
0.2 1.24205 1.24281 0.1
0.3 1.39847 1.39972 0.1
0.4 1.58180 1.58365 0.1
0.5 1.79489 1.79744 0.1
0.6 2.04086 2.04424 0.2
0.7 2.32315 2.32751 0.2
0.8 2.64558 2.65108 0.2
0.9 3.01236 3.01921 0.2
1.0 3.42816 3.43656 0.2

We see that the resulting approximate value for y(1) is 3.40542. The aggregate
error is about 1 percent, whereas with the former Euler method it was more than
13 percent. This is a substantial improvement.

Of course a smaller step size results in even more dramatic improvement in
accuracy. Table 7.4 displays the results of applying the improved Euler method
to our differential equation using a step size of h = 0.1. The relative error
at x = 1.00000 is now about 0.2 percent, which is another order of magni-
tude of improvement in accuracy. We have predicted that halving the step size
will decrease the aggregate error by a factor of 4. These results bear out that
prediction.

☞ You Try It: Apply the improved Euler method to the differential equation

y′ = 3x − y, y(1) = 2

with step size 0.1 and gauge the improvement in accuracy over the ordinary Euler
method.

In the next section we shall use a method of subdividing the intervals of our step
sequence to obtain greater accuracy. This results in the Runge–Kutta method.

7.5 The Runge–Kutta Method
Just as the trapezoid rule provides an improvement over the rectangular method
for approximating integrals, so Simpson’s rule gives an even better means for



CHAPTER 7 Numerical Methods 211

approximating integrals. With Simpson’s rule we approximate not by rectangles or
trapezoids but by parabolas.

Check your calculus book (for instance [STE, p. 421]) to review how Simpson’s
rule works. When we apply it to the integral of f , we find that∫ x2

x1

f (x, y) dx = 1
6 [f (x0, y0) + 4f (x1/2, y(x1/2)) + f (x1, y(x1))]. (1)

Here x1/2 ≡ x0 + h/2, the midpoint of x0 and x1. We cannot provide all the
rigorous details of the derivation of the fourth-order Runge–Kutta method. We
instead provide an intuitive development.

Just as we did in obtaining our earlier numerical algorithms, we must now
estimate both y1/2 and y1. The first estimate of y1/2 comes from Euler’s method.
Thus

y1/2 = y0 + m1

2
.

Here

m1 = h · f (x0, y0).

[The factor of 1/2 here comes from the step size from x0 to x1/2.] To correct the
estimate of y1/2, we calculate it again in this manner:

y1/2 = y0 + m2

2
,

where

m2 = h · f (x0 + h/2, y0 + m1/2).

Now, to predict y1, we use the expression for y1/2 and the Euler method:

y1 = y1/2 + m3

2
,

where m3 = h · f (x0 + h/2, y0 + m2/2).
Finally, let m4 = h · f (x0 + h, y0 + m3). The Runge–Kutta scheme is then

obtained by substituting each of these estimates into (1) to yield

y1 = y0 + 1
6(m1 + 2m2 + 2m3 + m4).

Just as in our earlier work, this algorithm can be applied to any number of mesh
points in a natural way. At each step of the iteration, we first compute the four
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numbers m1, m2, m3, m4 given by

m1 = h · f (xk, yk),

m2 = h · f

(
xk + h

2
, yk + m1

2

)
,

m3 = h · f

(
xk + h

2
, yk + m2

2

)
,

m4 = h · f (xk + h, yk + m3).

Then yk+1 is given by

yk+1 = yk + 1
6

(
m1 + 2m2 + 2m3 + m4

)
.

This new analytic paradigm, the Runge–Kutta technique, is capable of giving
extremely accurate results without the need for taking very small values of h (thus
making the work computationally expensive). The local truncation error is

εk = −y(5)(ξ) · h5

180
,

where ξ is a point between x0 and xn. The total truncation error is thus of the order
of magnitude of h4.

e.g. EXAMPLE 7.5
Apply the Runge–Kutta method to the differential equation

y′ = x + y, y(0) = 1. (2)

Take h = 1, so that the process has only a single step.

SOLUTION
We determine that

m1 = 1 · (0 + 1) = 1,

m2 = 1 · (0 + 0.5 + 1 + 0.5) = 2,

m3 = 1 · (0 + 0.5 + 1 + 1) = 2.5,

m4 = 1 · (0 + 1 + 1 + 2.5) = 4.5.

Thus

y1 = 1 + 1
6(1 + 4 + 5 + 4.5) = 3.417.
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Table 7.5 Tabulated values for exact and numerical solutions to
(2) with h = 0.2 using the Runge–Kutta method

xn yn Exact En (%)

0.0 1.00000 1.00000 0.00000
0.2 1.24280 1.24281 0.00044
0.4 1.58364 1.58365 0.00085
0.6 2.04421 2.04424 0.00125
0.8 2.65104 2.65108 0.00152
1.0 3.43650 3.43656 0.00179

Table 7.6 Tabulated values for exact and numerical solutions to
(2) with h = 0.1 using the Runge–Kutta method

xn yn Exact En (%)

0.0 1.00000 1.00000 0.0
0.1 1.11034 1.11034 0.00002
0.2 1.24281 1.24281 0.00003
0.3 1.39972 1.39972 0.00004
0.4 1.58365 1.58365 0.00006
0.5 1.79744 1.79744 0.00007
0.6 2.04424 2.04424 0.00008
0.7 2.32750 2.32751 0.00009
0.8 2.65108 2.65108 0.00010
0.9 3.01920 3.01921 0.00011
1.0 3.43656 3.43656 0.00012

Observe that this approximate solution is even better than that obtained with the
improved Euler method for h = 0.2. And the amount of computation involved
was absolutely minimal.

Table 7.5 shows the result of applying Runge–Kutta to our differential equa-
tion with h = 0.2. Notice that our approximate value for y(1) is 3.43650, which
agrees with the exact value to four decimal places. The relative error is less
than 0.002 percent.

If we cut the step size in half, to 0.1, then the accuracy is increased
dramatically—see Table 7.6. Now the relative error is less than 0.0002 percent.

You Try It: Apply the Runge–Kutta method to the differential equation

y′ = 2x − y, y(1) = 2.

Take h = 0.2.
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Math Note: We refine our methods of estimating integrals by passing from
approximation by rectangles to approximation by trapezoids and then to approxima-
tion by parabolas. We follow a similar scheme in refining our numerical methods
for differential equations. There is nothing to prevent us from continuing these
refinements—to approximation by cubics, and then by quartics, and so forth. But
there is a tradeoff in that the calculations become very complicated rather quickly,
and thus computationally expensive. Most of the modern techniques are refinements
of the method of approximation by parabolas.

Exercises
1. In each problem, use the Euler method with h = 0.1 to estimate the

solution at x = 1. In each case, compare your results to the exact solution
and discuss how well (or poorly) the Euler method has worked.
(a) y′ = 2x + 2y, y(0) = 1

(b) y′ = 1/y, y(0) = 1

2. In each problem, use the exact solution, together with step sizes h = 0.2,
to estimate the total discretization error that occurs with the Euler method
at x = 1.
(a) y′ = 2x + 2y, y(0) = 1

(b) y′ = 1/y, y(0) = 1

3. In each problem, use the improved Euler method with h = 0.1 to estimate
the solution at x = 1. Compare your results to the exact solution.
(a) y′ = 2x + 2y, y(0) = 1

(b) y′ = 1/y, y(0) = 1

4. In each problem, use the Runge–Kutta method with h = 0.1 to estimate
the solution at x = 1. Compare your results to the exact solution.
(a) y′ = 2x + 2y, y(0) = 1

(b) y′ = 1/y, y(0) = 1

5. Use the Euler method with h = 0.01 to estimate the solution at x = 0.02.
Compare your result to the exact solution and discuss how well (or poorly)
the Euler method has worked.

y′ = x − 2y, y(0) = 2.
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6. Use the improved Euler method with h = 0.01 to estimate the solution at
x = 0.02. Compare your result to the exact solution.

y′ = x − 2y, y(0) = 2.

7. Use the Runge–Kutta method with h = 0.01 to estimate the solution at
x = 0.02. Compare your result to the exact solution.

y′ = x − 2y, y(0) = 2.



8
CHAPTER

Systems of
First-Order
Equations

8.1 Introductory Remarks
Systems of differential equations arise very naturally in many physical contexts.
If y1, y2, . . . , yn are functions of the variable x, then a system, for us, will have
the form

y′
1 = f1(y1, . . . , yn)

y′
2 = f2(y1, . . . , yn)

. . .

y′
n = fn(y1, . . . , yn).

(1)
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In Section 2.7 we used a system of two second-order equations to describe the
motion of coupled harmonic oscillators. In an example below we shall see how
a system occurs in the context of dynamical systems having several degrees of
freedom. In another context, we shall see a system of differential equations used
to model a predator–prey problem in the study of population ecology.

From the mathematical point of view, systems of equations are useful in part
because an nth-order equation

y(n) = f (x, y, y′, . . . , y(n−1)) (2)

can be regarded (after a suitable change of notation) as a system. To see this, we let

y0 = y, y1 = y′, . . . , yn−1 = y(n−1).

Then we have

y′
1 = y2

y′
2 = y3

· · ·
y′
n = f (x, y1, y2, . . . , yn),

and this system is equivalent to our original equation (2). In practice, it is some-
times possible to treat a system like this as a vector-valued, first-order differential
equation, and to use techniques that we have studied in this book to learn about the
(vector) solution.

For cultural reasons, and for general interest, we shall next turn to the n-body
problem of classical mechanics. It, too, can be modeled by a system of ordinary
differential equations. Imagine n particles with masses mj , j = 1, . . . , n, and
located at points (xj , yj , zj ) in three-dimensional space. Assume that these points
exert a force on each other according to Newton’s Law of Universal Gravitation
(which we shall formulate in a moment). If rij is the distance between mi and mj

and if θ is the angle from the positive x-axis to the segment joining them (Fig. 8.1),
then the component of the force exerted on mi by mj is

Gmimj

r2
ij

cos θ = Gmimj(xj − xi)

r3
ij

.

Here G is a constant that depends on the force of gravity. Since the sum of all these
components for i �= j equals mi(d

2xi/dt2) (by Newton’s second law), we obtain
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Fig. 8.1.

n second-order differential equations

d2xi

dt2
= G ·

∑
j �=i

mj (xj − xi)

r3
ij

;

similarly,

d2yi

dt2
= G ·

∑
j �=i

mj (yj − yi)

r3
ij

and

d2zi

dt2
= G ·

∑
j �=i

mj (zj − zi)

r3
ij

.

If we make the change of notation

vxi
= dxi

dt
, vyi

= dyi

dt
, vzi

= dzi

dt
,

then we can reduce our system of 3n second-order equations to 6n first-order equa-
tions with unknowns x1, vx1, x2, vx2, . . . , xn, vxn, y1, vy1, y2, vy2, . . . , yn, vyn, z1,
vz1, z2, vz2, . . . , zn, vzn. We can also make the substitution

f 3
ij = [

(xi − xj )
2 + (yi − yj )

2 + (zi − zj )
2]3/2

.
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Then it can be proved that, if initial positions and velocities are specified for each
of the n particles and if the particles do not collide (i.e., rij is never 0), then
the subsequent position and velocity of each particle in the system is uniquely
determined.

This is the Newtonian model of the universe. It is thoroughly deterministic. If
n = 2, then the system was completely solved by Newton, giving rise to Kepler’s
laws (Section 2.6). But for n ≥ 3 there is a great deal that is not known. Of course
this mathematical model can be taken to model the motions of the planets in our
solar system. It is not known, for example, whether one of the planets (the Earth,
let us say) will one day leave its orbit and go crashing into the sun. Or whether
another planet will suddenly leave its orbit and go shooting out to infinity.

8.2 Linear Systems
Our experience in this subject might lead us to believe that systems of linear equa-
tions will be the most tractable. That is indeed the case; we treat them in this
section. By way of introduction, we shall concentrate on systems of two first-order
equations in two unknown functions. Thus we have⎧⎪⎪⎨⎪⎪⎩

dx

dt
= F(t, x, y)

dy

dt
= G(t, x, y).

The brace is used here to stress that the equations are linked; the choice of t for the
independent variable and of x and y for the dependent variables is traditional and
will be borne out in the ensuing discussions.

In fact our system will have an even more special form because of linearity:⎧⎪⎪⎨⎪⎪⎩
dx

dt
= a1(t)x + b1(t)y + f1(t)

dy

dt
= a2(t)x + b2(t)y + f2(t).

(1)

It will be convenient, and it is physically natural, for us to assume that the coeffi-
cient functions aj , bj , fj , j = 1, 2, are continuous on a closed interval [a, b] in
the t-axis.

In the special case that f1 = f2 ≡ 0, then we call the system homogeneous.
Otherwise it is nonhomogeneous. A solution of this system is of course a pair of
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functions (x(t), y(t)) that satisfy both differential equations. We shall write{
x = x(t)

y = y(t).

Most of the systems that we shall study in any detail will have constant coefficients.

e.g. EXAMPLE 8.1
Verify that the system ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= 4x − y

dy

dt
= 2x + y

has {
x = e3t

y = e3t

and {
x = e2t

y = 2e2t

as solution sets.

SOLUTION
We shall verify the first solution set, and leave the second for you.

Substituting x = e3t , y = e3t into the first equation yields

d

dt
e3t = 4e3t − e3t

or

3e3t = 3e3t ,

so that equation checks. For the second equation, we obtain

d

dt
e3t = 2e3t + e3t

or

3e3t = 3e3t ,

so the second equation checks.
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You Try It: Verify that the system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x + y

2
dy

dt
= 2x + y

has {
x = e2t

y = 2e2t

as a solution set.

We now give a sketch of the general theory of linear systems of first-order
equations. It is a fact that any second-order linear equation may be reduced to
a first-order system. Thus it will not be surprising that the theory we are about to
describe is similar to the theory of second-order linear equations.

We begin with a fundamental existence and uniqueness theorem.

GivenTHEOREM 8.1
Let [a, b] be an interval and t0 ∈ [a, b]. Let x0 and y0 be arbitrary numbers.
Then there is one and only one solution to the system⎧⎪⎪⎨⎪⎪⎩

dx

dt
= a1(t)x + b1(t)y + f1(t)

dy

dt
= a2(t)x + b2(t)y + f2(t)

(1)

satisfying x(t0) = x0, y(t0) = y0.

We next discuss the structure of the solution of (1) that is obtained when f1(t) =
f2(t) ≡ 0 (the so-called homogeneous situation). Thus we have⎧⎪⎪⎨⎪⎪⎩

dx

dt
= a1(t)x + b1(t)y

dy

dt
= a2(t)x + b2(t)y.

(2)

Of course the identically zero solution (x(t) ≡ 0, y(t) ≡ 0) is a solution of this
homogeneous system. The next theorem—familiar in form—will be the key to
constructing more useful solutions.
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Given THEOREM 8.2
If the homogeneous system (2) has two solutions{

x = x1(t)

y = y1(t)
and

{
x = x2(t)

y = y2(t)
(3)

on [a, b], then, for any constants c1 and c2,

x = c1x1(t) + c2x2(t)

y = c1y1(t) + c2y2(t)
(4)

is also a solution on [a, b].
Note, in the last theorem, that a new solution is obtained from the original two by

multiplying the first by c1 and the second by c2 and then adding. We therefore call the
newly created solution a linear combination of the given solutions. Thus Theorem
8.2 simply says that a linear combination of two solutions of the homogeneous
linear system is also a solution of the system. As an instance, in Example 8.1, any
pair of functions of the form {

x = c1e
3t + c2e

2t

y = c1e
3t + c22e2t

(5)

is a solution of the given system.
The next obvious question to settle is whether the collection of all linear com-

binations of two independent solutions of the homogeneous system is in fact all
the solutions (i.e., the general solution) of the system. By Theorem 8.1, we can
generate all possible solutions provided we can arrange to satisfy all possible sets
of initial conditions. This will now reduce to a simple and familiar algebra problem.

Demanding that, for some choice of c1 and c2, the solution{
x = c1e

3t + c2e
2t

y = c1e
3t + c2e

2t

satisfy x(t0) = x0 and y(t0) = y0 amounts to specifying that

x0 = c1x1(t0) + c2x2(t0)

and

y0 = c1y1(t0) + c2y2(t0).

This will be possible, for any choice of x0 and y0, provided that the determinant of
the coefficients of the linear system not be zero. In other words, we require that

W(t) = det

(
x1(t) x2(t)

y1(t) y2(t)

)
= x1(t)y2(t) − y1(t)x2(t) �= 0
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on the interval [a, b]. This determinant is naturally called the Wronskian of the two
solutions.

Our discussion thus far establishes the following theorem:

GivenTHEOREM 8.3
If the two solutions (3) of the homogeneous system (2) have a nonvanishing
Wronskian on the interval [a, b], then (4) is the general solution of the system
on this interval.

Thus, in particular, (5) is the general solution of the system of differential
equations in Example 8.1—for the Wronskian of the two solution sets is

W(t) = det

(
e3t e2t

e3t 2e2t

)
= e5t ,

and this function of course never vanishes.
As in our previous applications of the Wronskian (see in particular Section 5.5),

it is now still the case that either the Wronskian is identically zero or else it is never
vanishing. For the record, we enunciate this property formally.

GivenTHEOREM 8.4
If W(t) is the Wronskian of the two solutions of our homogeneous system (2),
then either W is identically zero or else it is nowhere vanishing.

Math Note: It is possible to think of a system of differential equations as just
a single vector-valued ordinary differential equation Y ′(t) = F(t, Y ), with Y =
(x, y). In many circumstances the solution to such an equation is an exponential,
suitably interpreted (just as it is for the scalar-valued differential equations that we
studied earlier in the book). We shall not explore this matter here, but some of the
references provide details of this approach.

We now develop an alternative approach to the question of whether a given pair
of solutions generates the general solution of a system. This new method is often
more direct and more convenient.

The two solutions (3) are called linearly dependent on the interval [a, b] if one
ordered pair (x1, y1) is a constant multiple of the other. Thus they are linearly
dependent if there is a constant k such that

x1(t) = k · x2(t)

y1(t) = k · y2(t)
or

x2(t) = k · x1(t)

y2(t) = k · y1(t)
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for some constant k and for all t ∈ [a, b]. The solutions are linearly independent if
neither is a constant multiple of the other in the sense just indicated. Clearly linear
dependence is equivalent to the condition that there exist two constants c1 and c2,
not both zero, such that

c1x1(t) + c2x2(t) = 0

c1y1(t) + c2y2(t) = 0

for all t ∈ [a, b].
Given THEOREM 8.5

If the two solutions (2) of the homogeneous system (2) are linearly independent
on the interval [a, b], then (4) is the general solution of (2) on this interval.

The interest of this new test is that one can usually determine by inspection whether
two solutions are linearly independent.

Now it is time to return to the general case—of nonhomogeneous (or inhomoge-
neous) systems. We conclude our discussion with this result (and, again, note the
analogy with second-order linear equations).

Given THEOREM 8.6
If the two solutions (3) of the homogeneous system (2) are linearly independent
on [a, b] and if {

x = xp(t)

y = yp(t)

is any particular solution of the system (1) on this interval, then{
x = c1x1(t) + c2x2(t) + xp(t)

y = c1y1(t) + c2y2(t) + yp(t)

is the general solution of (1) on [a, b].
Although we would like to end this section with a dramatic example tying all

the ideas together, this is in fact not feasible. In general it is quite difficult to find
both a particular solution and the general solution to the associated homogeneous
equations for a given system. We shall be able to treat the matter most effectively
for systems with constant coefficients. We learn about that situation in the next
section.
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8.3 Homogeneous Linear Systems with
Constant Coefficients

It is now time for us to give a complete and explicit solution of the system⎧⎪⎨⎪⎩
dx

dt
= a1x + b1y

dy

dt
= a2x + b2y.

(1)

Here a1, a2, b1, b2 are given constants. Sometimes a system of this type can be
solved by differentiating one of the two equations, eliminating one of the dependent
variables, and then solving the resulting second-order linear equation. In this section
we propose an alternative method that is based on constructing a pair of linearly
independent solutions directly from the given system.

Working by analogy with our studies of first-order linear equations, we now
posit that our system has a solution of the form{

x = Aemt

y = Bemt .
(2)

We substitute (2) into (1) and obtain

Amemt = a1Aemt + b1Bemt

Bmemt = a2Aemt + b2Bemt .

Dividing out the common factor of emt and rearranging yields the associated linear
algebraic system

(a1 − m)A + b1B = 0

a2A + (b2 − m)B = 0
(3)

in the unknowns A and B.
Of course the system (3) has the trivial solution A = B = 0. This makes (2) the

trivial solution of (1). We are of course seeking nontrivial solutions. The algebraic
system (3) will have nontrivial solutions precisely when the determinant of the
coefficients vanishes, i.e.,

det

(
a1 − m b1

a2 b2 − m

)
= 0.

Expanding the determinant, we find this quadratic expression for the unknown m:

m2 − (a1 + b2)m + (a1b2 − a2b1) = 0. (4)

We call this the associated equation for the original system (1).
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Let m1, m2 be the roots of the equation (4). If we replace m by m1 in (4), then
we know that the resulting equations have a nontrivial solution set A1, B1 so that{

x = A1e
m1t

y = B1e
m1t

(5)

is a nontrivial solution of the original system (1). Proceeding similarly with m2,
we find another nontrivial solution,{

x = A2e
m2t

y = B2e
m2t .

(6)

In order to be sure that we obtain two linearly independent solutions, and hence the
general solution for (1), we must examine in detail each of the three possibilities
for m1 and m2.

8.3.1 DISTINCT REAL ROOTS
When m1 and m2 are distinct real numbers, then the solutions (5) and (6) are
linearly independent. For, in fact, em1t and em2t are linearly independent. Thus{

x = c1A1e
m1t + c2A2e

m2t

y = c1B1e
m1t + c2B2e

m2t

is the general solution of (1).

e.g. EXAMPLE 8.2
Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x + y

dy

dt
= 4x − 2y.

SOLUTION
The associated algebraic system is

(1 − m)A + B = 0

4A + (−2 − m)B = 0.
(7)

The auxiliary equation is then

m2 + m − 6 = 0 or (m + 3)(m − 2) = 0,

so that m1 = −3, m2 = 2.
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With m1, the set of equations (7) becomes

4A + B = 0

4A + B = 0.

Since these equations are identical, it is plain that the determinant of the
coefficients is zero and there do exist nontrivial solutions.

A simple nontrivial solution of our system is A = 1, B = −4. Thus{
x = e−3t

y = −4e−3t

is a nontrivial solution of our original system of differential equations.
With m2, the set of equations (7) becomes

−A + B = 0

4A − 4B = 0.

Plainly these equations are multiples of each other, and there do exist nontrivial
solutions.

A simple nontrivial solution of our system is A = 1, B = 1. Thus{
x = e2t

y = e2t

is a nontrivial solution of our original system of differential equations.
Clearly the two solution sets that we have found are linearly independent.

Thus {
x = c1e

−3t + c2e
2t

y = −4c1e
−3t + c2e

2t

is the general solution of our system.

You Try It: Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x − 3y

dy

dt
= x + 2y.
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8.3.2 DISTINCT COMPLEX ROOTS
In fact the only way that complex roots can occur as roots of a quadratic equation
with real coefficients is as distinct conjugate roots a ± ib, where a and b are real
numbers and b �= 0. In this case we expect the coefficients A and B to be complex
numbers (which, for convenience, we shall call A∗

j and B∗
j ), and we obtain the

two linearly independent solutions{
x = A∗

1e
(a+ib)t

y = B∗
1 e(a+ib)t

and

{
x = A∗

2e
(a−ib)t

y = B∗
2 e(a−ib)t .

(8)

However, these are complex-valued solutions. On physical grounds, we often want
real-valued solutions; we therefore need a procedure for extracting such solutions.

We write A∗
1 = A1 + iA2 and B∗

1 = B1 + iB2, and we apply Euler’s formula
to the exponential. Thus the first indicated solution becomes{

x = (A1 + iA2)e
at (cos bt + i sin bt)

y = (B1 + iB2)e
at (cos bt + i sin bt).

We may rewrite this as{
x = eat

[
(A1 cos bt − A2 sin bt) + i(A1 sin bt + A2 cos bt)

]
y = eat

[
(B1 cos bt − B2 sin bt) + i(B1 sin bt + B2 cos bt)

]
.

From this information, just as in the case of single differential equations (Section
2.1), we deduce that there are two real-valued solutions to the system:{

x = eat (A1 cos bt − A2 sin bt)

y = eat (B1 cos bt − B2 sin bt)
(9)

and {
x = eat (A1 sin bt + A2 cos bt)

y = eat (B1 sin bt + B2 cos bt).
(10)

One can use just algebra to see that these solutions are linearly independent (exer-
cise for you). Thus the general solution to our linear system of ordinary differential
equations is{

x = eat
[
c1(A1 cos bt − A2 sin bt) + c2(A1 sin bt + A2 cos bt)

]
y = eat

[
c1(B1 cos bt − B2 sin bt) + c2(B1 sin bt + B2 cos bt)

]
.

Since this already gives us the general solution of our system, there is no need to
consider the second of the two solutions given in (8). Just as in the case of a single
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differential equation of second-order, our analysis of that second solution would
give rise to the same general solution.

e.g.EXAMPLE 8.3
Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x + 2y

dy

dt
= −5x + 3y.

SOLUTION
The associated algebraic system is

(1 − m)A + 2B = 0

−5A + (3 − m)B = 0.
(7)

The auxiliary equation is then

m2 − 4m + 13 = 0.

We therefore see that

m = 4 ± √
42 − 4 · 1 · 13

2 · 1
= 4 ± 6i

2
= 2 ± 3i.

For m = 2 + 3i, we solve the system

(−1 − 3i)A + 2B = 0

−5A + (1 − 3i)B = 0

and find that A = 1, B = 1/2 + (3/2)i. Likewise, for m = 2 − 3i, we solve the
system

(−1 + 3i)A + 2B = 0

−5A + (1 + 3i)B = 0

and find that A = 1, B = 1/2 − (3/2)i. Thus the complex solution sets to our
system are

x = e(2+3i)t , y =
(

1
2 + 3

2 i
)

e(2+3i)t

and

x = e(2−3i)t , y =
(

1
2 − 3

2 i
)

e(2−3i)t .
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The real solution sets are then

x = e2t cos 3t, y = 1
2e2t cos 3t − 3

2e2t sin 3t

and

x = e2t sin 3t, y = 1
2e2t sin 3t + 3

2e2t cos 3t.

☞ You Try It: Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −2x + y

dy

dt
= −x − 3y.

8.3.3 REPEATED REAL ROOTS
When m1 = m2 = m, then (5) and (6) are not linearly independent; in this case
we have just the one solution {

x = Aemt

y = Bemt .

Our experience with repeated roots of the auxiliary equation in the case of
second-order linear equations with constant coefficients might lead us to guess
that there is a second solution obtained by introducing into each of x and y a coef-
ficient of t . In fact the present situation calls for something a bit more elaborate.
We seek a second solution of the form{

x = (A1 + A2t)e
mt

y = (B1 + B2t)e
mt .

(11)

The general solution is then{
x = c1Aemt + c2(A1 + A2t)e

mt

y = c1Bemt + c2(B1 + B2t)e
mt .

(12)

The constants A1, A2, B1, B2 are determined by substituting (11) into the original
system of differential equations. Rather than endeavor to carry out this process in
complete generality, we now illustrate the idea with a simple example.1

1There is an exception to the general discussion we have just presented that we ought to at least note. Namely,
in case the coefficients of the system of ordinary differential equations satisfy a1 = b2 = a and a2 = b1 = 0,
then the associated quadratic equation is m2 − 2ma + a2 = (m − a)2 = 0. Thus m = a and the constants A and
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e.g.EXAMPLE 8.4
Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩

dx

dt
= 3x − 4y

dy

dt
= x − y.

SOLUTION
The associated linear algebraic system is

(3 − m)A − 4B = 0

A + (−1 − m)B = 0.

The auxiliary quadratic equation is then

m2 − 2m + 1 = 0 or (m − 1)2 = 0.

Thus m1 = m2 = m = 1.
With m = 1, the linear system becomes

2A − 4B = 0

A − 2B = 0.

Of course A = 2, B = 1 is a solution, so we have{
x = 2et

y = et

as a nontrivial solution of the given system.
We now seek a second linearly independent solution of the form{

x = (A1 + A2t)e
t

y = (B1 + B2t)e
t .

(13)

B are completely unrestricted (i.e., the putative equations that we usually solve for A and B reduce to a trivial
tautology). In this case the general solution of our system of differential equations is just{

x = c1emt

y = c2emt .

What is going on here is that each differential equation can be solved independently; there is no interdependence.
We call such a system uncoupled.
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When these expressions are substituted into our system of differential equations,
we find that

(A1 + A2t + A2)e
t = 3(A1 + A2t)e

t − 4(B1 + B2t)e
t

(B1 + B2t + B2)e
t = (A1 + A2t)e

t − (B1 + B2t)e
t .

Using a little algebra, these can be reduced to

(2A2 − 4B2)t + (2A1 − A2 − 4B1) = 0

(A2 − 2B2)t + (A1 − 2B1 − B2) = 0.

Since these last are to be identities in the variable t , we can only conclude
that

2A2 − 4B2 = 0 2A1 − A2 − 4B1 = 0

A2 − 2B2 = 0 A1 − 2B1 − B2 = 0.

The two equations on the left have A2 = 2, B2 = 1 as a solution. With these
values, the two equations on the right become

2A1 − 4B1 = 2

A1 − 2B1 = 1.

Of course their solution is A1 = 1, B1 = 0. We now insert these numbers into
(13) to obtain {

x = (1 + 2t)et

y = tet .

This is our second solution.
Since it is clear from inspection that the two solutions we have found are

linearly independent, we conclude that{
x = 2c1e

t + c2(1 + 2t)et

y = c1e
t + c2te

t

is the general solution of our system of differential equations.

☞ You Try It: Find the general solution of the system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x − 1y

dy

dt
= x + 4y.
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Math Note: We can think of a falling body as described by a linear system of
differential equations. Let x(t) be the height of the body at time t and let y(t)

be the velocity of the body at time t . Write down the system that describes a
falling body that is dropped from height 50 ft (take the gravitational constant to be
g ≈ −32 ft/sec).

8.4 Nonlinear Systems:
Volterra’s Predator–Prey Equations

Imagine an island inhabited by foxes and rabbits. Foxes eat rabbits; rabbits, in turn
develop methods of evasion to avoid being eaten. The resulting interaction is a
fascinating topic for study, and is amenable to analysis via differential equations.

To appreciate the nature of the dynamic between the foxes and the rabbits, let
us describe some of the vectors at play. We take it that the foxes eat rabbits—that
is their source of food—and the rabbits eat exclusively clover. We assume that
there is an endless supply of clover; the rabbits never run out of food. When
the rabbits are abundant, then the foxes flourish and their population grows.
When the foxes become too numerous and eat too many rabbits, then the rabbit
population declines; as a result, the foxes enter a period of famine and their pop-
ulation begins to decline. As the foxes decrease in number, the rabbits become
relatively safe and their population starts to increase again. This triggers a new
increase in the fox population—as the foxes now have an increased source of food.
As time goes on, we see an endlessly repeating cycle of interrelated increases and
decreases in the populations of the two species. See Fig. 8.2, in which the sizes of
the populations (x for rabbits, y for foxes) are plotted against time.

Problems of the sort that we have described here have been studied, for many
years, by both mathematicians and biologists. It is pleasing to see how the math-
ematical analysis confirms the intuitive perception of the situation as described
above. In our analysis below, we shall follow the approach of Vito Volterra
(1860–1940), who was one of the pioneers in this subject.

If x is the number of rabbits at time t , then the relation

dx

dt
= ax, a > 0

should hold, provided that the rabbits’ food supply is unlimited and there are no
foxes. This simply says that the rate of increase of the number of rabbits is propor-
tional to the number present. [You studied equations of this kind in your calculus
class when you learned about exponential growth.]
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foxes

rabbits

t

x, y

Fig. 8.2.

It is natural to assume that the number of “encounters” between rabbits and
foxes per unit of time is jointly proportional to x and y. If we furthermore make
the plausible assumption that a certain proportion of those encounters results in a
rabbit being eaten, then we have

dx

dt
= ax − bxy, a, b > 0.

In the same way, we notice that in the absence of rabbits the foxes die out, and their
increase depends on the number of encounters with rabbits. Thus the same logic
leads to the companion differential equation

dy

dt
= −cy + gxy, c, g > 0.

We have derived the following nonlinear system describing the interaction of
the foxes and the rabbits: ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x(a − by)

dy

dt
= −y(c − gx).

(1)

The equations (1) are called Volterra’s predator–prey equations. It is a fact that
this system cannot be solved explicitly in terms of elementary functions. On the
other hand, we can perform what is known as a phase plane analysis and learn
a great deal about the behavior of x(t) and y(t).
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To be more specific, instead of endeavoring to describe x as a function of t and
y as a function of t , we instead think of{

x = x(t)

y = y(t)

as the parametric equations of a curve in the x–y plane. We shall be able to determine
the rectangular equations of this curve.

We begin by eliminating t in (1) and separating the variables. Thus

dx

x(a − by)
= dt

dy

−y(c − gx)
= dt,

hence

dx

x(a − by)
= dy

−y(c − gx)

or

(a − by) dy

y
= −(c − gx) dx

x
.

Integration now yields

a ln y − by = −c ln x + gx + C.

In other words,

yae−by = eCx−cegx. (2)

If we take it that x(0) = x0 and y(0) = y0, then we may solve this last equation
for eC and find that

eC = xc
0y

a
0 e−gx0−by0 .

It is convenient to let eC = K .
In fact we cannot solve (2) for either x or y. But we can utilize an ingenious

method of Volterra to find points on the curve. To proceed, we give the left-hand
side of (2) the name of z and the right-hand side the name of w. Then we plot the
graphs C1 and C2 of the functions

z = yae−by and w = Kx−cegx (3)

as shown in Fig. 8.3. Since z = w (by (2)), we must in the third quadrant depict this
relationship with the dotted line L. To the maximum value of z given by the point
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Fig. 8.3.

A on C1, there corresponds one value of y and—via M on L and the corresponding
points A′ and A′′ on C2—two x’s; and these determine the bounds between which
x may vary.

Similarly, the minimum value of w given by B on C2 leads to N on L and hence
to B ′ and B ′′ on C1; these points determine the limiting values for y. In this way
we find the points P1, P2, and Q1, Q2 on the desired curve C3. Additional points
are easily found by starting on L at a point R (let us say) anywhere between M

and N and projecting up to C1 and over to C3, and then over to C2 and up to C3.
Again see Fig. 8.3.

It is clear that changing the value of K raises or lowers the point B, and this in
turn expands or contracts the curve C3. Accordingly, when K is given a range of
values, then we obtain a family of ovals about the point S; and this is all there is
of C3 when the minimum value of w equals the maximum value of z.

We next show that, as t increases, the corresponding point (x, y) on C3 moves
around the curve in a counterclockwise direction. To see this, we begin by
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observing that equations (1) give the horizontal and vertical components of the
velocity at this point. A simple calculation based on (3) shows that the point S has
coordinates x = c/g, y = a/b. Namely, at those particular values of x and y, we
see from (1) that both dx/dt and dy/dt are 0. Thus we must be at the stationary
point S.

When x < c/g, the second equation of (1) tells us that dy/dt is negative, so that
our point on C3 moves down as it traverses the arc Q2P1Q1. By similar reasoning,
it moves up along the arc Q1P2Q2. This proves our assertion.

We close this section by using the fox–rabbit system to illustrate the impor-
tant method of linearization. First note that if the rabbit and fox populations are,
respectively, constantly equal to

x = c

g
and y = a

b
, (4)

then the system (1) is satisfied and we have dx/dt ≡ 0 and dy/dt ≡ 0. Thus there
is no increase or decrease in either x or y. The populations (4) are called equilibrium
populations; the populations x and y can maintain themselves indefinitely at these
constant levels. This is the special case in which the minimum of w equals the
maximum of z, so that the oval C3 reduces to the point S.

We now return to the general case and put

x = c

g
+ X and y = a

b
+ Y ;

here we think of X and Y as the deviations of x and y from their equilibrium values.
An easy calculation shows that if we replace x and y in (1) with X and Y (which
simply amounts to translating the point (c/g, a/b) to the origin), then (1) becomes⎧⎪⎪⎨⎪⎪⎩

dX

dt
= −bc

g
Y − bXY

dY

dt
= ag

b
X + gXY.

(5)

The process of linearization now consists of assuming that if X and Y are small,
then the XY term in (5) can be treated as negligible and hence discarded. This
process results in (5) simplifying to the linear system (hence the name)⎧⎪⎪⎨⎪⎪⎩

dX

dt
= −bc

g
Y

dY

dt
= ag

b
X.

(6)
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It is straightforward to solve (5) by the methods developed in this chapter. Easier
still is to divide the left sides and right sides, thus eliminating dt , to obtain

dY

dX
= −ag2

b2c

X

Y
.

The solution of this last equation is immediately seen to be

ag2X2 + b2cY 2 = C2.

This is a family of ellipses centered at the origin in the X–Y plane. Since ellipses are
qualitatively similar to the ovals of Fig. 8.3, we may hope that (6) is a reasonable
approximation to (5).

Math Note: Of course foxes and rabbits are a simple-minded paradigm for
predator–prey systems. We could instead use the ideas presented here to study
competing software companies, or professors competing for grants, or forest fires
and forests. The ideas initiated by Volterra one hundred years ago have become an
established and prominent part of mathematical analysis of real-world situations.

One of the important themes that we have introduced in this chapter, which
arose naturally in our study of systems, is that of nonlinearity. Nonlinear equations
have none of the simple structure, nor any concept of “general solution,” that the
more familiar linear equations have. They are currently a matter of intense study.

In studying a system like (1), we have learned to direct our attention to the
behavior of solutions near points in the x–y plane at which the right sides both
vanish. We have seen why periodic solutions (i.e., those that yield simple closed
curves like C3 in Fig. 8.3) are important and advantageous for our analysis. And
we have given a brief hint of how it can be useful to study a nonlinear system by
approximation with a linear system.

Exercises
1. Replace each of the following differential equations by an equivalent

system of first-order equations:
(a) y′′ − xy′ − xy = 0

(b) y′′′ = y′′ − x2(y′)2

(c) xy′′ − x2y′ − x3y = 0
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2. (a) Show that {
x = e4t

y = e4t
and

{
x = e−2t

y = −e−2t

are solutions of the homogeneous system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x + 3y

dy

dt
= 3x + y.

(b) Find the particular solution {
x = x(t)

y = y(t)

of this system for which x(0) = 5 and y(0) = 1.

3. (a) Show that {
x = 2e4t

y = 3e4t
and

{
x = e−t

y = −e−t

are solutions of the homogeneous system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x + 2y

dy

dt
= 3x + 2y.

(b) Show that {
x = 3t − 2

y = −2t + 3

is a particular solution of the nonhomogeneous system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x + 2y + t − 1

dy

dt
= 3x + 2y − 5t − 2.

Write the general solution of this system.
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4. Use the methods treated in this chapter to find the general solution of each
of the following systems:

(a)

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −3x + 4y

dy

dt
= −2x + 3y

(b)

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x

dy

dt
= 3y

5. Replace each of the following ordinary differential equations by an
equivalent system of first-order equations:
(a) y′′′ + x2y′′ − xy′ + y = x

(b) y′′ − [sin x]y′ + [cos x]y = 0

6. In each of the following problems, show that the given solution set indeed
satisfies the system of differential equations:
(a) x(t) = 1

2Ae−5t + 2Bet , y(t) = Ae−5t + Bet

x′(t) = 3x(t) − 4y(t)

y′(t) = 4x(t) − 7y(t)

(b) x(t) = Ae3t + Be−t , y(t) = 2Ae3t − 2Be−t

x′(t) = x(t) + y(t)

y′(t) = 4x(t) + y(t)

7. Solve each of the following systems of linear ordinary differential
equations:
(a) x′(t) = 3x(t) + 2y(t)

y′(t) = −2x(t) − y(t)

(b) x′(t) = x(t) + y(t)

y′(t) = −x(t) + y(t)

8. Solve the initial value problem {
x′ = y

y′ = x

with x(0) = 1, y(1) = 0.
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1. The general solution of the differential equation y′′ − 4y = 0 is
(a) y = Ae2x + Bd−2x

(b) y = e2x , y = e−2x

(c) y = e2x + e−2x

(d) y = Aex + Be−x

(e) y = Aex + Bd2x

2. A solution of the differential equation (y′)2x − 9x2y = 0 is given by
(a) y = x2

(b) y = x + 1
(c) y = x3

(d) y = x2 − x

(e) y = cos x

3. The solution of the initial value problem y′ + xy = x, y(0) = 2, is given by
(a) y = ex2/2

(b) y = xe−x

(c) y = x + Ce−x2

(d) y = 1 + e−x2/2

(e) y = x2 − e−x2

241
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4. A solution of the differential equation y′ · sin y = x ln x is given by

(a) y = arccos

[
−x2

2
ln x + x2

4
+ C

]
(b) y = arcsin

[
x3

6
− ln x

]
(c) y = arctan

[
ln x

x
− x3

]
(d) y = arccos

[
ln x

x2
− x2 ln x

]
(e) y = arcsin

[
x ln x + x2

ln x

]
5. Of the differential equations (i) y′′ − (sin x)y = ex , (ii) y(iv) + x2y′′ − exy =

cos x, (iii) y′′′ + y′′ + x5y = x3, and (iv) x4y′′ + x3y′′ + x2y = x5, we see that
(a) Equation (i) is of second order, equation (ii) is of third order, equation (iii)

is of fifth order, and equation (iv) if of fourth order.

(b) Equation (i) is of second order, equation (ii) is of fourth order, equation (iii)
is of third order, and equation (iv) is of second order.

(c) Equation (i) is of third order, equation (ii) is of fourth order, equation (iii)
is of second order, and equation (iv) if of first order.

(d) Equation (i) is of fourth order, equation (ii) is of third order, equation (iii)
is of second order, and equation (iv) is of first order.

(e) Equation (i) is of first order, equation (ii) is of second order, equation (iii)
is of third order, and equation (iv) is of fourth order.

6. Use the method of separation of variables to completely solve the differential
equation xy′ = ln x · y.
(a) y = C · xex2

(b) y = C · x2 ln x

(c) y = C · x/ ln x

(d) y = C · ln x/x2

(e) y = C · eln2 x/2

7. Use the method of separation of variables to solve the initial value problem
xy′ = y2/x2, y(1) = 4.
(a) y = C/[ln x + 1]
(b) y = 1/[x−2/2 − 1/4]
(c) y = x/[x−1 − x2]
(d) y = x/[x + 1]
(e) y = x ln2 x
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8. Use the method of first-order linear equations to find the general solution of
the equation y′ − y/x = 1.
(a) y = Cex + x

(b) y = Cx2 + x

(c) y = x − C ln x

(d) y = x ln x + Cx

(e) y = C ln x − x

9. Use the method of first-order linear equations to find the unique solution to
the initial value problem y′ − (cos x)y = cos x y(0) = 1.
(a) y = (cos x)esin x

(b) y = (sin x)e− cos x

(c) y = x cos x

(d) y = (cos x)(sin x)

(e) y = −1 + 2esin x

10. The differential equation x2y′′ − sin x(y′)2 + (ln x)y = ex is not linear because
(a) there is an x2 factor in front of the lead term.
(b) there is a factor of sin x in front of y′.
(c) the term y′ is squared.
(d) there is a factor of ln x in front of y.
(e) there is a term ex on the right.

11. Of the differential equations (i) xy2 dx − yx2 dy = 0, (ii) x cos y dx +
y sin x dy = 0, (iii) [y2 cos xy − xy2 sin xy] dx + [2xy cos xy − x2y2 sin xy] dy

= 0, and (iv) 3x2y dx + x3 dy = 0, we see that
(a) Equations (i), (iii), (iv) are exact.
(b) Equations (ii), (iii), (iv) are exact.
(c) Equations (iii) and (iv) are exact.
(d) Equations (i) and (ii) are exact.
(e) Equations (ii) and (iii) are exact.

12. Use the method of exact equations to solve the differential equation 2xy3 dx +
3y2x2 dy = 0.
(a) y = C · x2/3

(b) y = C · x2

(c) y = C · x−2/3

(d) y = C · x1/3

(e) y = C · x−1/3

13. Find the orthogonal trajectories to the family of curves y = Cx3.

(a) y =
√

−x2

3
+ E

(b) y = −1/x + D
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(c) y = x2 + E

(d) y = Cx + D

(e) y2 + x2 = C

14. Of the differential equations (i) xy − y2 = dy/dx, (ii) (x2 − xy) dx − (y2 +
xy) dy = 0, (iii) (x/y − sin(x/y)) dx + (y2/x2 + ln(x/y)) dy = 0, and
(iv) x dy − y dx = 0, which are homogeneous?
(a) Equations (i), (ii), and (iii).
(b) Equations (i), (iii), and (iv).
(c) Equations (i) and (iv).
(d) Equations (iii) and (iv).
(e) Equations (ii), (iii), and (iv).

15. Find an integrating factor for the differential equation [2y/x] dx + 1 dy = 0
and then solve the equation. The solution is
(a) y = Cx2

(b) y = Cx + x2

(c) y = C/x2

(d) y = C + x2

(e) y = Cx − x2

16. Use the method of reduction of order to solve the differential equation
y′′ + y′ = x.
(a) y = x2 + x − ex

(b) y = x2 − x + Ce−x

(c) y = x + Cex

(d) y = x2/2 − x + Ce−x

(e) y = ex − Cx2

17. Use the method of reduction of order to find some solution to the equation
y′′ − y2 = 0.
(a) y = 1/x − 1/x2

(b) y = x + x2

(c) y = x − 1/x

(d) y = x + 1/x2

(e) y = 6/x2

18. The method of reduction of order will not work on the equation (sin x)y′ −
x2y = ex because
(a) there is a nonlinear term on the right-hand side.
(b) there is a factor of x2 in front of the y.
(c) the lead coefficient is not 1.
(d) the equation is not of second order.
(e) the equation is too complex.
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19. The general solution of the differential equation y′′ − 5y′ + 4y = 0 is given by
(a) y = Aex + Be−x

(b) y = Ae4x + Bex

(c) y = Ae−x + B−2x

(d) y = Aex + Be2x

(e) y = Ae4x + Be−4x

20. The solution of the initial value problem y′′+5y′+6y = 0, y(0) = 1, y′(0) = 2,
is given by
(a) y = 5e−2x − 4e−3x

(b) y = 3e−2x + 5e−3x

(c) y = 4e2x + 3e3x

(d) y = e−2x + e−3x

(e) y = −2e−2x − 3e−3x

21. Two linearly independent solutions of the differential equation y′′+2y′+10y =
0 are given by
(a) y1 = e−x sin 3x, y2 = e−x cos 3x

(b) y1 = ex sin 6x, y2 = ex sin 4x

(c) y1 = ex sin 6x, y2 = ex cos 4x

(d) y1 = e−x sin 4x, y2 = e−x cos 4x

(e) y1 = sin x, y2 = cos x

22. The general solution of the differential equation y′′ − 7y′ + 10y = x is
(a) y = Ae2x + Be5x

(b) y = Ae2x + Be5x + x2 − x

(c) y = Ae−2x + Be−5x + (x/10 − 7/10)

(d) y = Ae2x + Be5x + (x/10 − 7/10)

(e) y = A cos 2x + B sin 5x + x

23. The unique solution of the initial value problem y′′ − 5y′ + 6y = x2, y(0) = 2,
y′(0) = 1, is

(a) 2e2x − 3e3x + x2

6
− x

(b) e2x − e3x + x2 + x

(c)
513

108
e2x − 79

27
e3x + x2

6
+ 5x

18
+ 19

108

(d)
11

108
e2x − 29

27
e3x + x2

2
− x

6
(e) 12ex − 6e−x + x2 − x + 4
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24. A solution of the differential equation x2y′′ − xy′ + y = x2 is given by
(a) y = 3x2 − x

(b) y = x2 + x

(c) y = −x2 + x3

(d) y = x − x4

(e) y = 4 + x2

25. The general solution of the differential equation y′′ − 4y′ + 4y = 0 is
(a) y = Ae2x + Be3x

(b) y = Ae2x + Bxe2x

(c) y = Ae2x + B sin 2x

(d) y = A sin 2x + B cos 2x

(e) y = Ae2x + Be−2x

26. Use the method of variation of parameters to find the general solution of the
differential equation y′′ − 7y′ + 12y = ex .
(a) y = Ae3x + Be4x + ex

(b) y = Aex + Be3x + ex/6

(c) y = Ae3x + Be−3x + e4x

(d) y = Ae3x + Be4x + ex/6

(e) y = Ae−3x + Be−4x + ex/6

27. Use the method of undetermined coefficients to find the general solution of
the differential equation y′′ − 7y′ + 12y = cos x.
(a) y = Ae3x + Be4x + cos x

(b) y = Ae3x + Be4x + sin x

(c) y = Ae−3x + Be−4x + cos x

(d) y = Ae−3x + Be−4x + sin x

(e) y = Ae3x + Be4x + 11 cos x

170
− 7 sin x

170

28. Find the general solution of the differential equation y′′′ − 2y′′ − 5y′ + 6.
(a) y = Aex + Be2x + Ce3x

(b) y = Aex + Be−2x + Ce3x

(c) y = Aex + Be−2x

(d) y = Ae−2x + Be3x

(e) y = Ae2x + Be−x + Cex

29. Given that the differential equation y′′ − (1/x)y′ = 0 has the function y ≡ 1 as
a solution, find the general solution.
(a) y = Ax2 + B

(b) y = Ax2 + Bx + C
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(c) y = Ax2 + Cx

(d) y = Ax + B

(e) y = A + B

30. Kepler’s Second Law tells us that, the more eccentric the elliptical orbit of
a planet,
(a) the greater the speed of the planet when it traverses the portion of the orbit

that is flattest (i.e., has least curvature).

(b) the lesser the speed of the planet when it traverses the portion of the orbit
that is flattest (i.e., has least curvature).

(c) the more likely the planet is to “jump orbit” and float off into space.

(d) the more likely the planet is to slow down at the end of the day.

(e) the more likely the planet is to speed up when it passes the earth.

31. Kepler’s Third Law tells us that the length of a year on Venus is
(a) longer than an Earth year.

(b) the same length as an Earth year.

(c) shorter than an Earth year.

(d) elliptical in shape.

(e) variable.

32. The radius of convergence of the power series
∑∞

j=0[2j xj ]/j ! is
(a) 4

(b) +∞
(c) 1

(d) 0

(e) 2

33. Calculate the power series expansion of the function f (x) = x · cos x2 about
the point c = 0.

(a) f (x) = ∑∞
j=0

xj

j2

(b) f (x) = ∑∞
j=0 3−j x2j

(c) f (x) = ∑∞
j=0(−1)j · x4j+1

(2j)!
(d) f (x) = ∑∞

j=0(−1)j · x2j+1

(2j)!
(e) f (x) = ∑∞

j=0
x2j

j !
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34. According to the method of power series, the solution of the differential equation
y′ − xy = x is

(a) y = ∑∞
j=0

xj

(2j)!
(b) y = ∑∞

j=0
xj

j

(c) y = ∑∞
j=1

x2j+1

(2j + 1)!
(d) y = ∑∞

j=1
x3j

(2j)!
(e) y = 1

2
+∑∞

j=1
x2j

j !
35. According to the method of power series, the solution of the differential equation

y′′ + y = x2 is

(a) y = x2 − 2 + A
∑∞

j=0(−1)j
x2j

(2j)! + B
∑∞

j=0(−1)j
x2j+1

(2j + 1)!
(b) y = x + 1 + A

∑∞
j=0(−1)j

x2j

(2j)! + B
∑∞

j=0(−1)j
x2j+1

(2j + 1)!
(c) y = x2 − 2x + A

∑∞
j=0

xj

j
+ B

∑∞
j=0

x2j

j !
(d) y = x + x3 − A

∑∞
j=0

2j

j ! x
j

(e) y = x2 + x − 1 + A
∑∞

j=0
2j

(j + 3)!x
j + B

∑∞
j=0

3−j

j ! x2j+1

36. The method of power series tells us that the general solution of the differential
equation y′ = y is
(a) y = Ce3x

(b) y = Ce−x

(c) y = C sin x

(d) y = C cos x

(e) y = Cex

37. The recursion relations for the coefficients of the power series solution to the
differential equation y′′ − xy = x are

(a) a0 = 0; aj+2 = 1

j (j − 1)
aj , j ≥ 1

(b) aj+2 = j

(j + 2)j
, j ≥ 0

(c) aj+1 = j · aj , j ≥ 1
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(d) a2 = 0, a3 = (1 + a0)/(3 · 2), aj+3 = aj /((j + 3)(j + 2)), j ≥ 1

(e) a2 = a0 + 2a1, aj+2 = [aj − aj−1]/6

38. With the method of power series, the solution to the initial value problem y′ +
xy = x, y(0) = 3 is

(a) y = ∑∞
j=0

x2j

(j + 1)!
(b) y = 1 + 2

∑∞
j=0(−1)j

x2j

j !
(c) y = ∑∞

j=0
3xj

ej

(d) y = −3 +∑∞
j=0

x2j+1

(j + 2)!
(e) y = x

2
−∑∞

j=0(−1)j+1 j ! · xj

jj

39. Begin with the geometric series in x and find a power series representation for
the function 1/(1 − x)3.
(a)

∑∞
j=0 j (j + 1)xj−1

(b)
∑∞

j=0
j !
jj

xj

(c) 1
2

∑∞
j=0(j + 1)(j + 2)xj

(d)
∑∞

j=0
j

j + 1
x2j

(e)
∑∞

j=0 j2xj−1

40. The coefficient of x3 in the power series expansion solution of the initial value
problem y′′ + xy′ + y = 1, y(0) = 2, y′(0) = 1, is
(a) −1/3

(b) 1/3

(c) 2/5

(d) 1/7

(e) 2/9

41. The Fourier series of the function f (x) = x2 on the interval [−π, π) is

(a) π2 +∑∞
j=1

jπ

2
cos jx

(b)
π2

3
+∑∞

j=1
(−1)j 4

j2

(c)
∑∞

j=1 π3 sin jx +∑∞
j=1 π2 cos jx
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(d)
π

6
+∑∞

j=1 cos jx − sin jx

(e)
−2π

5
+∑∞

j=1 j2 cos jx + j sin jx

42. The Fourier series of the function f (x) = cos2 x − 3 sin2 x on the interval
[−π, π] is
(a) 1 + sin 2x

(b) 3 − cos 4x

(c) 2 + sin 3x

(d) 2 − cos 2x

(e) 4 + 2 cos 2x

43. The Fourier series of the function f (x) = x on the interval [−2, 2] is

(a)
∑∞

j=1(j
2 − j) sin

jπx

2

(b)
∑∞

j=1(j
2 + j) sin

jπx

2

(c)
∑∞

j=1
j3

2
sin

jπx

2
(d)

∑∞
j=1 j sin(2jx)

(e)
∑∞

j=1
−4(−1)j

jπ
sin

jπx

2

44. The function

f (x) =
{

1 if − 3 ≤ x < 0

−1 if 0 ≤ x ≤ 3

has Fourier series with only sine terms (no cosine terms appear). This is so
because
(a) The function f is locally constant.

(b) The function f is bounded by 2.

(c) The function f is not periodic.

(d) The function f is odd.

(e) The function f is piecewise linear.

45. The functions f (x) = x and g(x) = x2 are orthogonal on the interval [−1, 1]
in the sense that ∫ 1

−1
f (x)g(x) dx = 0.

Find a third function h, a third-degree polynomial, that is orthogonal to both
f and g.
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(a) h(x) = x3 − 2x2 + x

(b) h(x) = x3

4
− x2

3
+ 2x

(c) h(x) = 2x3

3
+ 2x2

3
− 2x

5
− 2

5

(d) h(x) = x3

2
+ 2x2

7
− x

(e) h(x) = x3 + 5x2 = 3x + 2

46. Find the cosine series for the function f (x) = sin 2x on the interval [0, π ].
(a) f (x) = ∑∞

j=1
j

j2 + 4
cos jx

(b) f (x) = ∑∞
j=1 f (j + 1) cos jx

(c) f (x) = ∑∞
j=1

4

π

[
1 + (−1)j+1

4 − j2

]
cos jx

(d) f (x) = ∑∞
j=1

j

π
(−1)j+1 cos jx

(e) f (x) = ∑∞
j=1

j2 + j

4
cos jx

47. Find the Fourier series of the function

f (x) =

⎧⎪⎨⎪⎩
0 if − π ≤ x < 0

1 if 0 ≤ x ≤ π/2

0 if π/2 < x ≤ π.

(a)
∑∞

j=1
j2

2
cos jx +∑∞

j=1
j

2
sin jx

(b)
∑∞

j=1
πj

j + 1
cos jx +∑∞

j=1
π

2j
sin jx

(c) 1
4 +∑∞

j=1
1

2j
(−1)[j/2] [(−1)j+1 + 1

]
cos jx

+∑∞
j=1

−1

2j
(−1)[j/2] [(−1)j + 1

]
sin jx

(d)
∑∞

j=1 j cos jx +∑∞
j=1(j + 1) sin jx

(e)
∑∞

j=1
1

j
cos jx +∑∞

j=1
1

j + 1
sin jx

48. Find the Fourier series of the function f (x) = ex on the interval [−π, π].
(a)

1

2π
eπ +∑∞

j=1
j

j2 + 1
cos jx

+
∑∞

j=1
1

j2 + 1
sin jx



Final Exam252

(b)
1

2π

(
eπ − e−π

)+∑∞
j=1

(−1)j eπ

π
· 1

1 + j2
cos jx

+∑∞
j=1

(−1)j e−π

π
· j

1 + j2
sin jx

(c)
1

2π

(
e−π − eπ

)+∑∞
j=1

(−1)j eπ

π
· j

1 + j2
cos jx

+∑∞
j=1

(−1)j e−π

π
· 1

1 + j2
sin jx

(d)
1

2π

(
eπ/2 − e−π/2

)+∑∞
j=1

(−1)j+1e2π

π
· 1

1 + j2
cos jx

+∑∞
j=1

(−1)j+1e−2π

2π
· j

1 + j2
sin jx

(e)
1

2π

(
e3π − e−3π

)+∑∞
j=1

(−1)j
2+1e−π

π
· j2

1 + j2
cos jx

+∑∞
j=1

(−1)j
2+1eπ

2π
· −j2

1 + j2
sin jx

49. Find the Fourier series of the function f (x) = sin x − 4 cos 7x.
(a) sin x − 4 cos 7x

(b) cos x − 4 sin 7x

(c) cos 4x − sin 7x

(d) sin 4x − cos 7x

(e) sin 7x − cos 4x

50. Find the Fourier series of the function

f (x) =
{

0 if − 2 ≤ x < 0

1 if 0 ≤ x ≤ 2

on the interval [−2, 2].
(a)

∑∞
j=1

j

2
cos jx +∑∞

j=1
2

j
sin jx

(b)
∑∞

j=1 j2 cos jx +∑∞
j=1 j sin jx

(c)
∑∞

j=1 j ! cos jx +∑∞
j=1 jj sin jx

(d)
∑∞

j=1
−1

jπ

[
(−1)j − 1

]
sin

jπx

2

(e)
∑∞

j=1
1

jπ

[
(−1)j + 1

]
cos

jπx

2

51. Find the Fourier series of the function

f (x) =
{

0 if x ≤ 0

x if x > 0
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on the interval [−π, π].
(a)

π

4
+∑∞

j=1

[
(−1)j + 1

j2

]
cos jx + +∑∞

j=1

[
π(−1)j+1

j

]
sin jx

(b)
∑∞

j=1(−1)j · j2 · sin jx

(c)
∑∞

j=1(−1)j+1 · j3 cos jx

(d)
∑∞

j=1
j

3
cos jx +∑∞

j=1
j2

5
sin jx

(e)
∑∞

j=1 j (j + 1) cos jx

52. The Fourier series, calculated as usual using the Riemann integral of calculus,
of the function

f (x) =
{

0 if x is rational

1 if x is irrational

(a) exists and is identically 0

(b) has only cosine terms

(c) has only sine terms

(d) has both sine and cosine terms, but only with even frequencies

(e) does not exist because the function f is not integrable

53. Find the eigenvalues λn and the eigenfunctions yn for the equation y′′ +λy = 0
with the boundary conditions y(0) = 0, y(π/3) = 0.
(a) eigenvalues are 2, 4, 6, 8, . . . and eigenfunctions

are sin 2x, sin 4x, sin 6x, sin 8x, . . .

(b) eigenvalues are 9, 36, 81, . . . and eigenfunctions
are sin 3x, sin 6x, sin 9x, . . .

(c) eigenvalues are 3, 6, 9, . . . and eigenfunctions
are sin 3x, sin 6x, sin 9x, . . .

(d) eigenvalues are 4, 9, 16, . . . and eigenfunctions
are sin 2x, sin 3x, sin 4x, . . .

(e) eigenvalues are 6, 9, 12, . . . and eigenfunctions
are sin

√
6x, sin

√
9x, sin

√
12x, . . .

54. Consider the wave equation utt = uxx with a = 1. Assume that the string has an
initial configuration (before it is released to vibrate) given by ϕ(x) = x2 − πx.
Also the initial velocity is identically ψ(x) = 0. Then d’Alembert’s solution to
the equation is
(a) u(x, t) = t2 − x2 + x

(b) u(x, t) = xt2 − tx2 + t3

(c) u(x, t) = x2 + t2 − πx

(d) u(x, t) = xt − x + t

(e) u(x, t) = xt − x + t
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55. Solve the Dirichlet problem on the unit disc with boundary data f (θ) =
sin(θ/2), −π ≤ θ ≤ π .

(a) w(r, θ) = 1
2 +∑∞

j=0
rj

j ! cos jθ

(b) w(r, θ) = ∑∞
j=1 rj (−1)j 8j

π(1 − 4j2)
sin jθ

(c) w(r, θ) = ∑∞
j=1 rj (−1)j 2j

j ! cos jθ +∑∞
j=1 rj 2−j

j ! sin jθ

(d) w(r, θ) = ∑∞
j=1 rj j3 cos jθ

(e) w(r, θ) = ∑∞
j=1 rj j

j + 1
sin jθ

56. Solve the Dirichlet problem on the unit disc with boundary data f (θ) = cos2 θ .

(a) 1
2 + r2

2
cos 2θ

(b) 1
2 + r sin θ − r2 cos θ

(c) 1
2 − r2

2
cos 2θ

(d) 1
2 + r2

2
sin θ

(e) 1
2 + r3

3
cos 2θ

57. Consider the wave equation utt = uxx with a = 1. Assume that the string has
an initial configuration ϕ(x) = sin x and an initial velocity ψ(x) = 2x. Then
d’Alembert’s solution to the equation is
(a) u(x, t) = tx − sin t cos x

(b) u(x, t) = t2x + cos t sin x

(c) u(x, t) = 2tx + cos t sin x

(d) u(x, t) = tx2 − cos2 t sin x

(e) u(x, t) = t sin x + x cos t

58. Find the eigenvalues and eigenfunctions for the equation y′′ + λy = 0 in the
case y(1) = 0, y(5) = 0.
(a) eigenvalues are 1, 4, 9, . . . and eigenfunctions are cos πx, cos 2πx,

cos 3πx, etc.

(b) eigenvalues are 2, 4, 6, 8, . . . and eigenfunctions are cos 4x, cos 8x,
cos 12x, ….

(c) eigenvalues are 3, 6, 9, . . . and eigenfunctions are sin 3x, sin 6x,
sin 9x, . . . .
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(d) eigenvalues are j2π2/16 and eigenfunctions are cos
πx

4
−sin

πx

4
, cos

πx

2
,

cos
3πx

4
+ sin

3πx

4
, sin πx, etc.

(e) eigenvalues are 4, 9, 16, . . . and eigenfunctions are sin 2x, sin 3x,
sin 4x, . . . .

59. The rod in our model for heat equation has length π . The initial temperature
distribution is f (x) = x, and the ends are held at the fixed temperature 0.
Find the heat distribution u(x, t) over time.
(a) u(x, t) = ∑∞

j=1 e−a2j2t sin jx

(b) u(x, t) = ∑∞
j=1 a2t2 sin jx

(c) u(x, t) = ∑∞
j=1 ea2j2t sin jx

(d) u(x, t) = ∑∞
j=1 e−ajt sin jx

(e) u(x, t) = ∑∞
j=1 e−a2j2t 2

j
(−1)j+1 sin jx

60. The Laplace transform of the function f (x) = xex is

(a) L[f ](p) = 1

(−p + 1)2

(b) L[f ](p) = 1

p2

(c) L[f ](p) = −1

(p + 1)2

(d) L[f ](p) = p

p2 + 1

(e) L[f ](p) = −p

1 − p2

61. The Laplace transform of the function f (x) = 4x3 − 5 sin 2x is

(a) L[f ](p) = 8

p2
− 6

p2 + 1

(b) L[f ](p) = 1

p2 − 1
+ 2

p2

(c) L[f ](p) = p

p2 + 9
− 1

p2

(d) L[f ](p) = 24

p4
− 10

p2 + 4

(e) L[f ](p) = 16

p3
+ 8

p2 + 1

62. The inverse Laplace transform of the function F(p) = −p3 + p2 + p + 4

p4 + 5p2 + 4
is

(a) f (x) = sin 3x + sin x

(b) f (x) = 4 cos 2x − 3 sin 4x
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(c) f (x) = sin x − cos 2x

(d) f (x) = 5 cos 4x + 6 sin 2x

(e) f (x) = cos x + sin 2x

63. The inverse Laplace transform of the function F(p) = −p4 + 6p − 12

p5 − 2p4
is

(a) f (x) = x5 − ex

(b) f (x) = sinh x + cos 2x

(c) f (x) = sin 3x − e4x

(d) f (x) = x3 − e2x

(e) f (x) = x4 + e−5x

64. Use the Laplace transform to find the general solution of the differential equation
y′′ − 4y′ + 4y = εx .
(a) y = Ae2x + Bxe2x + ex

(b) y = Aex + Be−x + 3ex

(c) y = Ae2x + Be−2x + ex

(d) y = Aex + Bxex + e2x

(e) y = Ae3x + Bex + e−x

65. Use the Laplace transform to find the general solution of the differential equation
y′′ − 4y = x.

(a) y = x

2
+ Aex + Be−x

(b) y = −x2

2
+ Ae3x + Be−3x

(c) y = x

4
+ Ae−x + Be−2x

(d) y = −x

3
+ Ae2x + Be3x

(e) y = −x

4
+ Ae2x + Be−2x

66. Use the Laplace transform to solve the initial value problem y′ − y = ex ,
y(0) = 2.
(a) y = e−x + 4
(b) y = xex + 2ex

(c) y = x sin x − cos x

(d) y = xe−x − ex

(e) y = x2 cos x − x sin x

67. Use the Laplace transform to solve the initial value problem y′′ −5y′ +6y = x,
y(0) = 1, y′(0) = 4.

(a) y = x

6
+ 5

36
+ Ae2x + Be3x

(b) y = x2

3
− 2

3
+ Aex + Be−2x
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(c) y = x − 5

3
+ A cos x + B sin x

(d) y = x2 − x

4
+ Ax cos x + Bx sin x

(e) y = x − 5

7
+ Ae3x + Be−x

68. Let f (x) = cos x and g(x) = sin x. Calculate L[f ∗ g](p).

(a) L[f ∗ g](p) = 1

p
· p

4 + p2

(b) L[f ∗ g](p) = 4

p2 − 4
· 4p

p2 − 4

(c) L[f ∗ g](p) = 1

p2 + 1
· p

p2 + 1

(d) L[f ∗ g](p) = 2

p2
· p

p + 1

(e) L[f ∗ g](p) = 6

p2 − 1
· 4p

p2 + 1

69. Use the Laplace transform to solve the integral equation

y(x) = x +
∫ x

0
sin(x − t)y(t) dt.

(a) y = x + x3

6

(b) y = −x + x2

4

(c) y = x2 − x

5

(d) y = x3 + x2

6

(e) y = x

2
− x3

70. Use the Laplace transform to solve the integral equation

y(x) = x −
∫ x

0
ex−t y(t) dt.

(a) y = x2 − x3

3

(b) y = x − x2

2

(c) y = x

3
− x2

2



Final Exam258

(d) y = 2x + 3x3

(e) y = x3

5
− x

4

71. Use the Laplace transform to solve the integral equation

y(x) = x2 +
∫ x

0
(x − t)y(t) dt.

(a) y(x) = −2x + e2x

(b) y(x) = −2 + ex + e−x

(c) y(x) = x2 − e2x + e−x

(d) y(x) = x + ex

(e) y(x) = −x + e−x

72. Find the kernel A, coming from the principle of superposition as in
Example 6.12, for the differential equation y′′ − y′ − 6y = ex .
(a) A(x) = 1

3 − e−3x + ex

(b) A(x) = x

4
+ e2x − e−3x

(c) A(x) = −2
3 + e−x − e5x

(d) A(x) = −1
6 + 1

15e3x + 1
10e−2x

(e) A(x) = 4
5 − 3e2x − 5ex

73. Use the principle of superposition to solve the initial value problem y′′ − 3y′ +
2y = e3x , y(0) = 2, y′(0) = 3.
(a) y = e3x − 3ex + 2e2x

(b) y = 4e3x + ex − 5e2x

(c) y = −e3x − ex + e2x

(d) y = 3
2ex + 1

2e3x

(e) y = e−x + e2x + e3x

74. Find the Laplace transform of the step function

f (x) =
{

0 if x ≤ 2

1 if x > 2.

(a) L[f ](p) = − 1

p
e−2p

(b) L[f ](p) = 1

p2
e−p

(c) L[f ](p) = 1

p
ep
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(d) L[f ](p) = 2

p3
e−3p

(e) L[f ](p) = 1

p2
ep

75. Let δ be the impulse function and define, for a > 0, pa(x) = δ(x − a). What is
the Laplace transform of pa?
(a) L[f ](p) = e−pa

(b) L[f ](p) = epa

(c) L[f ](p) = pe−pa

(d) L[f ](p) = pepa

(e) L[f ](p) = p2epa

76. Calculate the convolution of f (x) = cos x and g(x) = x.
(a) f ∗ g(x) = sin x + x

(b) f ∗ g(x) = sin 2x − cos x

(c) f ∗ g(x) = 1 − cos x

(d) f ∗ g(x) = 1 + cos x

(e) f ∗ g(x) = x cos x − sin x

77. Calculate the convolution of f (x) = x with g(x) = x.
(a) f ∗ g(x) = x2 − x

(b) f ∗ g(x) = x2 + x

(c) f ∗ g(x) = x2 − x3

(d) f ∗ g(x) = x3

6

(e) f ∗ g(x) = x3

4

78. Calculate the convolution of f (x) = x2 and g(x) = x.

(a) f ∗ g(x) = x3

9

(b) f ∗ g(x) = x2

16

(c) f ∗ g(x) = x

3

(d) f ∗ g(x) = x + x2

12

(e) f ∗ g(x) = x4

12
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79. Carry out three iterations of Euler’s method for the differential equation
y′ = x + 2y with initial condition y(0) = 2 and step size 0.2.
(a) 4.78

(b) 5.624

(c) 5.33

(d) 4.94

(e) 5.1

80. Carry out four iterations of Euler’s method for the differential equation
y′ = 2x − y with initial condition y(0) = −1 and step size 0.1.
(a) −0.5465

(b) 0.4976

(c) −0.6983

(d) −0.5439

(e) −0.5598

81. Carry out three iterations of the improved Euler’s method for the differential
equation y′ = x + 2y with initial condition y(0) = 2 and step size 0.2.
(a) 6.24179

(b) 5.997348

(c) 6.742552

(d) 5.902857

(e) 6.114976

82. Carry out four iterations of the improved Euler’s method for the differential
equation y′ = 2x − y with initial condition y(0) = −1 and step size 0.1.
(a) −0.556792

(b) −0.638044

(c) −0.563056

(d) 0.529119

(e) −0.529198

83. The most convenient method for telling when the result of a numerical method
is accurate to m decimal places is
(a) Iterate the method for m steps.

(b) Use a method that is known to double its accuracy with each iteration, and
then apply it [log2 m] times.

(c) Iterate the method until the solution has m significant figures.

(d) Use scientific notation.

(e) Iterate the method until the kth step and the (k+1)st step agree to m decimal
places. Then use the result from the (k + 1)st step.
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84. Carry out two iterations of the Runge–Kutta method for the differential equation
y′ = x + 2y with initial condition y(0) = 2 and step size 0.2.
(a) 4.566827
(b) 4.678398
(c) 5.129845
(d) 4.998127
(e) −0.546789

85. Carry out two iterations of the Runge–Kutta method for the differential equation
y′ = 2x − y with initial condition y(0) = −1 and step size 0.1.
(a) 0.84673
(b) −0.78349
(c) −0.85792
(d) −0.88923
(e) 0.77889

86. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x + 2y

dy

dt
= −x + 4y

has the two solution sets

(a)

{
x = e2t

y = e2t
and

{
x = 3e3t

y = e3t

(b)

{
x = e3t

y = e3t
and

{
x = 2e2t

y = e2t

(c)

{
x = e−2t

y = e−2t
and

{
x = 3e−3t

y = e−3t

(d)

{
x = et

y = et
and

{
x = 4e−t

y = e−t

(e)

{
x = 3et

y = e3t
and

{
x = 2et

y = e−2t

87. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −2x + 4y

dy

dt
= x + y
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has the two solution sets

(a)

{
x = et

y = e2t and

{
x = 3e−3t

y = e−4t

(b)

{
x = e2t

y = 4e2t and

{
x = 2e−2t

y = e−2t

(c)

{
x = e2t

y = e−2t and

{
x = 3e−3t

y = e3t

(d)

{
x = et

y = e−t and

{
x = 3et

y = e−t

(e)

{
x = −4e−3t

y = e−3t and

{
x = e2t

y = e2t

88. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 3x − 5y

dy

dt
= 2x + y

has the two solution sets

(a)

{
x = e3t cos 2t + 2e3t sin 2t

y = 2e3t sin 2t
and

{
x = 3e−3t cos 2t − 4e−3t sin 2t

y = e−3t cos 2t + 2e−3t sin 2t

(b)

{
x = e−t cos 3t + 2et sin 3t

y = 2e−3t sin 2t
and

{
x = 2et cos t − 4e−t sin t

y = et cos t + 2e−t sin t

(c)

{
x = e2t cos 2t + 2e2t sin 2t

y = 2e2t sin 2t − 3e2t cos 2t
and

{
x = 3et cos 4t − 4et sin 4t

y = e−3t cos 4t + 2e−3t sin 4t

(d)

{
x = e−2t cos t + 2e−2t sin t

y = 2e−t sin t + 4e−t cos t
and

{
x = 3e−3t cos 2t − 4e−3t sin 2t

y = e−3t cos 2t + 2e−3t sin 2t

(e)

{
x = e2t cos 3t − 3e2t sin 3t

y = 2e2t cos 3t
and

{
x = 3e2t cos 3t + e2t sin 3t

y = 2e2t sin 3t

89. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x

dy

dt
= 3y

is not interesting (from the point of view of the methods presented in
Chapter 8) because
(a) the only solution set is x ≡ 0, y ≡ 0.

(b) the system is uncoupled and the equations may be solved individually.
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(c) all the solutions are linearly dependent.
(d) the two differential equations are inconsistent.
(e) the equations are nonlinear.

90. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x − 4y

dy

dt
= 3x + 2y

has the two solution sets

(a)

{
x = 2e−2t cos 2t

y = 3e2t sin 2t
and

{
x = 3e−2t cos 2t

y = e2t sin 2t

(b)

{
x = e−t cos 3

√
2t

y = 2e−t sin 3
√

2t
and

{
x = 2et cos 3

√
2t

y = et sin 3
√

2t

(c)

{
x = 4e2t cos 3

√
2t

y = 2e2t sin 3
√

2t
and

{
x = −5e2t cos 3

√
2t

y = 2e2t sin 3
√

2t

(d)

{
x = 2e2t cos 2

√
3t

y = √
3e2t sin 2

√
3t

and

{
x = 2e2t sin 2

√
3t

y = −√
3e2t cos 2

√
3t

(e)

{
x = e−4t cos

√
3t

y = 2e−4t sin
√

3t
and

{
x = 3e−3t cos 2t − 4e−3t sin 2t

y = e−3t cos 2t + 2e−3t sin 2t

91. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −x + y

dy

dt
= −4x + 3y

has the two solution sets

(a)

{
x = et

y = 2et and

{
x = tet

y = (1 + 2t)et

(b)

{
x = 2e−t cos 2t

y = 3et sin 2t
and

{
x = e2t

y = e−2t

(c)

{
x = (t + 1)e2t

y = (t − 1)e−2t and

{
x = e−3t

y = e−t

(d)

{
x = 2te4t

y = 3te4t and

{
x = 4e3t

y = −4e−3t

(e)

{
x = et

y = 2e−t and

{
x = tet

y = te−t
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92. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 4x + y

dy

dt
= −x + 2y

has the two solution sets

(a)

{
x = et

y = 2et and

{
x = te2t

y = (1 + 2t)e2t

(b)

{
x = 2e−t

y = 3e−t and

{
x = e2t

y = e−2t

(c)

{
x = (t + 1)e2t

y = (t − 1)e−2t and

{
x = e−3t

y = e−t

(d)

{
x = e3t

y = −e3t and

{
x = (1 + t)e3t

y = −te3t

(e)

{
x = te3t

y = 2te3t and

{
x = 4e3t

y = −e3t

93. The differential equation y′′ − 2xy′ + 3xy = 0 is equivalent to the system

(a)

⎧⎪⎪⎨⎪⎪⎩
dy

dx
= −xz

dz

dx
= 2z − 4xy

(b)

⎧⎪⎪⎨⎪⎪⎩
dy

dx
= 4xz + y

dz

dx
= −xz + 2xy

(c)

⎧⎪⎪⎨⎪⎪⎩
dy

dx
= z

dz

dx
= 2xz − 3xy

(d)

⎧⎪⎪⎨⎪⎪⎩
dy

dx
= xy − z

dz

dx
= xz − 3y

(e)

⎧⎪⎪⎨⎪⎪⎩
dy

dx
= 4z − 2xy

dz

dx
= xz + 3y
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94. The differential equation y′′′+4xy′′−xy′+3y = x2 is equivalent to the system

(a)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dy

dx
= z

dz

dx
= w

dw

dx
= −4xw + xz − 3y + x2

(b)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dy

dx
= z − w

dz

dx
= w + y

dw

dx
= −xw + z − 2y + x2

(c)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dy

dx
= w − y

dz

dx
= z − w

dw

dx
= −xz + xy − 3w + x

(d)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dy

dx
= w

dz

dx
= z

dw

dx
= −4xy + xw − 3z

(e)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dy

dx
= y

dz

dx
= z

dw

dx
= −4xw − 3y

95. The differential equation (y′′)2 − (y′)3 − y4 = x2 is equivalent to the system

(a)

{
(z′)2 − z3 − y4 = x2

y′ = z

(b)

{
(z′) − z2 − y3 = x2

y′ = z

(c)

{
(z′)2 − z2 − y3 = x2

y′ = z2
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(d)

{
z′y − z3y′ − y4 = x2

y′z = x

(e)

{
(z′)4 − z3 − zy4 = x2

y′x = z

96. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x + 2y + 2t

dy

dt
= −x + 4y + 3t2

has the general solution

(a)

⎧⎪⎪⎨⎪⎪⎩
x = Ae2t + 2Be3t + t2 + t

5
+ 7

18

y = Ae2t + Be3t − t2

3
− t

4
+ 5

36

(b)

⎧⎪⎪⎨⎪⎪⎩
x = Aet + 2Be−2t + 2t2 + t

5
+ 5

16

y = Aet + Be−2t − t2

4
− t

2
+ 1

36

(c)

⎧⎪⎪⎨⎪⎪⎩
x = Ae−t + 2Be−t + 4t2 + 2t

3
+ 1

18

y = Ae−3t + Bet − t2

4
− t

9
+ 11

36

(d)

⎧⎪⎪⎨⎪⎪⎩
x = 3Ae3t + 2Be2t + 2t2 + t

3
+ 1

18

y = 5Ae3t + Be2t − t2

3
− t

6
+ 5

36

(e)

⎧⎪⎪⎨⎪⎪⎩
x = Ae3t + 2Be2t + t2 + t

3
+ 5

18

y = Ae3t + Be2t − t2

2
− t

6
+ 1

36

97. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −2x + 4y + cos t

dy

dt
= x + y + sin t
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has the general solution

(a)

⎧⎨⎩x = −4Ae−3t + Be2t + 2
25 cos t − 11

25 sin t

y = Ae−3t + Be2t − 8
25 cos t − 6

25 sin t

(b)

⎧⎨⎩x = −2Ae−3t + 3Be2t + 1
25 cos t − 9

25 sin t

y = 3Ae−3t + 2Be2t − 4
25 cos t − 3

25 sin t

(c)

⎧⎨⎩x = −Ae−3t + 2Be2t + 3
25 cos t − 7

25 sin t

y = 3Ae−3t + 5Be2t − 2
25 cos t − 3

25 sin t

(d)

⎧⎨⎩x = 2Ae−t + −3Be2t + 6
25 cos t − 2

25 sin t

y = 2Ae−t + 4Be2t − 4
25 cos t − 3

25 sin t

(e)

⎧⎨⎩x = −4Aet + Be−2t + 7
25 cos t − 2

25 sin t

y = Aet + Be−2t − 3
25 cos t − 4

25 sin t

98. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 3x − 5y + et

dy

dt
= 2x + y + 2et

has the general solution

(a)

⎧⎨⎩x = A[e4t cos 5t − 3e−4t sin 5t] + B[3e4t cos 5t + e−4t sin 5t] − 6et

y = A[2e4t cos 5t] + B[2e−4t sin 5t] − 1
3et

(b)

⎧⎨⎩x = A[e−2t cos 3t − 3e−3t sin 2t] + B[3e2t cos 3t + e2t sin 3t] − e2t

y = A[2e2t cos 3t] + B[2e3t sin 2t] − 1
5e2t

(c)

⎧⎨⎩x = A[e−t cos t − 3e−t sin t] + B[3e−t cos t + e−t sin t] − 4et

y = A[2et cos t] + B[2et sin t] − 1
2et

(d)

⎧⎨⎩x = A[e2t cos 3t − 3e2t sin 3t] + B[3e2t cos 3t + e2t sin 3t] − et

y = A[2e2t cos 3t] + B[2e2t sin 3t] − 1
5et

(e)

⎧⎨⎩x = A[et cos 2t − 3et sin 2t] + B[3e2t cos 3t + e2t sin 3t] − 2et

y = A[2et cos 2t] + B[2et sin 2t] − 1
8et
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99. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= 2x − 4y + 3

dy

dt
= 3x + 2y − t2

has the general solution

(a)

⎧⎪⎪⎨⎪⎪⎩
x = A[2et cos

√
3t] + B[2et sin

√
3t] + t2

3
− t

6
− 1

8

y = A[√5e3t sin
√

3t] + B[−√
5e3t cos

√
3t] + t2

4
− t

2
+ 13

32

(b)

⎧⎪⎪⎨⎪⎪⎩
x = A[e2t cos 2

√
7t] + B[e2t sin 2

√
7t] + t2

4
− 3

8

y = A[√6e2t sin
√

7t] + B[−√
5e2t cos

√
7t] + t2

3
− t

12

(c)

⎧⎪⎪⎨⎪⎪⎩
x = A[2e2t cos 2

√
3t] + B[2e2t sin 2

√
3t] + t2

4
+ t

8
− 3

8

y = A[√3e2t sin 2
√

3t] + B[−√
3e2t cos 2

√
3t] + t2

8
− t

16
+ 17

32

(d)

⎧⎨⎩x = A[e−2t cos 3t − 3e−2t sin 3t] + B[3e2t cos 2t + e2t sin 2t] − 3et

y = A[2e−2t cos 3t] + B[2e2t sin 3t] − 1
4et

(e)

⎧⎨⎩x = A[e−3t cos t − 3e−3t sin t] + B[3e3t cos 3t + e3t sin 3t] − et

y = A[2et cos 2t] + B[2et sin 2t] − 1
6et

100. The system ⎧⎪⎪⎨⎪⎪⎩
dx

dt
= −x + y − sin t

dy

dt
= −4x + 3y + cos t

has the general solution

(a)

⎧⎨⎩x = A[e2t ] + B[(1 + 4t)e3t ] + 3
4 cos t

y = A[5e2t ] + B[−2te3t ] + 3
4 cos t − 1

3 sin t

(b)

⎧⎨⎩x = A[e3t ] + B[(1 + t)e3t ] + 3
2 cos t

y = A[−e3t ] + B[−te3t ] + 3
2 cos t − 1

2 sin t
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(c)

⎧⎨⎩x = A[et ] + B[(3 − t)e−t ] + sin t

y = A[−et ] + B[−tet ] + 3
4 cos t − 2

3 cos t

(d)

⎧⎨⎩x = A[e2t ] + B[te−2t ] − cos t

y = A[−4e3t ] + B[te−3t ] + 3
5 cos t − sin t

(e)

⎧⎨⎩x = A[et ] + B[(−1 + 3t)et ] + 1
4 cos t

y = A[−(1 + t)et ] + B[te−t ] − 1
3 sin t
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Solutions
1. (a), 2. (c), 3. (d), 4. (a), 5. (b), 6. (e), 7. (b), 8. (d), 9. (e), 10. (c),

11. (c), 12. (c), 13. (a), 14. (e), 15. (c), 16. (d), 17. (e), 18. (d), 19. (b), 20. (a),
21. (a), 22. (d), 23. (c), 24. (b), 25. (b), 26. (d), 27. (e), 28. (b), 29. (a), 30. (a),
31. (c), 32. (b), 33. (c), 34. (e), 35. (a), 36. (e), 37. (d), 38. (b), 39. (c), 40. (a),
41. (b), 42. (d), 43. (e), 44. (d), 45. (c), 46. (e), 47. (c), 48. (b), 49. (a), 50. (d),
51. (a), 52. (e), 53. (b), 54. (c), 55. (b), 56. (a), 57. (c), 58. (d), 59. (e), 60. (a),
61. (d), 62. (c), 63. (d), 64. (a), 65. (e), 66. (b), 67. (a), 68. (c), 69. (a), 70. (b),
71. (b), 72. (d), 73. (d), 74. (a), 75. (a), 76. (c), 77. (d), 78. (e), 79. (b), 80. (d),
81. (c), 82. (e), 83. (e), 84. (a), 85. (c), 86. (b), 87. (e), 88. (e), 89. (b), 90. (d),
91. (a), 92. (d), 93. (c), 94. (a), 95. (a), 96. (e), 97. (a), 98. (d), 99. (c), 100. (b).



Solutions to
Exercises

Chapter 1
1. (a) y′ = (x2 + c)′ = 2x

(b) xy′ = x · (cx2)′ = x · 2cx = 2cx2 = 2y

2. (a) y = ∫
e3x − x dx = e3x

3
− x2

2
+ C

(b) y = ∫
xex2

dx = ex2

2
+ C

3. (a) y = ∫
xex dx = xex − ex + C. The initial condition says that

3 = y(1) = e−e+C, hence C = 3. The solution to the initial value
problem is y = xex − ex + 3.

(b) y = ∫
2 sin x cos x dx = sin2 x + C. The initial condition says that

1 = y(0) = 0 + C, hence C = 1. The solution to the initial value
problem is y = sin2 x + 1.

271
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4. (a) Write the equation as

x5 dy

dx
− 1

y5 = 0.

This can be rewritten as

y5 dy = x−5 dx

or ∫
y5 dy =

∫
x−5 dx.

Integrating out yields

y6

6
= −x−4

4
+ C

or

y =
[
−3

2
x−4 + C

]1/6

.

(b) Write the equation as

dy

dx
= 4xy,

hence

dy

y
= 4x dx.

Integrating both sides gives

ln y = 2x2 + C

or

y = Dex2
.

5. (a) Write the equation as

y dy = (x + 1) dx.

Integrating both sides yields

y2

2
= x2

2
+ x + C.
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A little algebra then gives

y =
√

x2 + 2x + D.

The initial condition yields

3 = y(1) = √
3 + D,

hence D = 6. The solution to the initial value problem is

y =
√

x2 + 2x + 6.

(b) We write

dy

y
= dx

x2
.

Integrating yields

ln y = −1

x
+ C.

Exponentiation gives

y = De−1/x.

The initial condition tells us that

2 = De−1,

hence

D = 2e.

The solution of the initial value problem is

y = 2e · e−1/x.

6. (a) Now
∫

p(x) dx = −x2/2, so our integrating factor is e−x2/2. Thus
the equation becomes

e−x2/2y′ − e−x2/2xy = 0

or [
e−x2/2y

]′ = 0
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or (integrating)

e−x2/2y = C.

We find, then, that the general solution is

y = Cex2/2.

(b) Now
∫

p(x) dx = x2, hence our integrating factor is ex2
. Thus the

equation becomes

ex2
y′ + ex2

2xy = ex2
2x

or [
ex2

y
]′ = ex2

2x

or (integrating)

ex2
y = ex2 + C.

Simplifying yields

y = 1 + Ce−x2
.

7. Let B(t) be the amount of salt in the tank at time t . The initial condition
is B(0) = 2. The rate of change of the amount of salt present is dB/dt .
Since 3 pounds of salt are added per minute, we have a factor of +3
on the right-hand side. Since 4 gallons of the mixture are removed, we
have a factor of 4B/(10 − t) on the right-hand side. Thus our differential
equation is

dB

dt
= 3 − 4 · B

10 − t
.

This is easily solved by the method of first-order linear equations to yield

B = (10 − t)−7 + C(10 − t)−4.

The condition B(0) = 2 says that C = 2 · 104 − 10−3. Thus the amount
of salt at any time t is given by

B(t) = (10 − t)−7 + [2 · 104 − 10−3] · (10 − t)−4.

8. (a) Since [d/dy](x + 2/y) �= [d/dx](y), we see that this equation is
not exact.
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(b) Since [d/dy](sin x tan y + 1) = sin x sec2 y and [d/dx]×
(− cos x sec2 y) = sin x sec2 y, we affirm that the equation is exact.
Now∫

sin x tan y + 1 dx = − cos x tan y + x + φ(y) = f (x, y).

Thus

− cos x sec2 y = ∂f

∂y
= − cos x sec2 y + φ′(y),

hence

φ′(y) = 0

or φ(y) = C. In sum, f (x, y) = − cos x tan y + x + C, so the
solution of the differential equation is

− cos x tan y + x = C̃.

9. Now dy/dx = 4cx3. The negative reciprocal is −1/[4cx3]. Thus the
orthogonal trajectories satisfy dy/dx = −1/[4cx3]. Integration yields
the family y = x−2/[8C] of orthogonal trajectories.

10. (a) We rewrite the equation as(y

x
sin

y

x
+ 1

)
= sin

y

x

dy

dx
.

Replacing y by ty and x by tx reveals the equation to be homo-
geneous of degree 0. Now we make the substitutions

y = zx and
dy

dx
= z + x

dz

dx

to obtain

z sin z + 1 = sin z

[
z + x

dz

dx

]
.

This equation is easily solved by separation of variables to yield

z = arccos[− ln x + C].
Resubstituting z = y/x finally gives

y = x arccos[− ln x + C].
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(b) Writing the equation as

dy

dx
= dy

dx
+ 2e−y/x,

we see that it is homogeneous of degree 0. Substituting z = y/x

and dy/dx = z + x[dz/dx], we obtain the equation

x
dz

dx
= 2e−z.

This is easily solved using separation of variables to obtain

z = ln[2 ln x + C],
hence

y = x · ln[2 ln x + C].
11. (a) We calculate that

g(x) = [∂M/∂y] − [∂N/∂x]
N

= −2

x
.

It follows that the integrating factor we seek is µ(x) = e
∫

g(x) dx =
1/x2. Multiplying the differential equation through by µ gives

12ydx + 12xdy = 0.

This equation is certainly exact, and can be solved by the standard
method. The answer is

12xy = C.

(b) We calculate that

g(x) = [∂M/∂y] − [∂N/∂x]
N

= −1

x
.

It follows that the integrating factor we seek is µ(x) = e
∫

g(x) dx =
e− ln x = 1/x. Multiplying the differential equation through by
µ gives (

y − 1

x

)
dx + (x − y) dy = 0.

This equation is exact and may be solved by the usual means.
The solution is

yx − ln x − y2

2
= C.
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12. (a) The change of variable y′ = p, y′′ = p′, converts the equation to

xp′ = p + p3.

Now separation of variables may be used to find that

p =
√

Cx√
1 − Cx2

.

Resubstituting for y yields the final answer

y = −
√

1 − Cx2
√

C
.

(b) We use the substitution y′ = p, y′′ = p
dp

dy
to obtain the new equation

p
dp

dy
= k2y.

This equation is easily solved by separation of variables to obtain a
solution

y = C · ekx.

Chapter 2
1. (a) The associated polynomial is r2 + r − 6 with roots r = 3, −2. The

general solution to the differential equation is y = Ae3x + Be−2x .
(b) The associated polynomial is r2 + 2r + 1. This polynomial has the

root 1 repeated. The general solution to the differential equation is
y = ex + xex .

2. (a) The associated polynomial is r2 − 5r + 6 with roots r = 2, 3. The
general solution of the differential equation is y = Ae2x +Be3x . The
initial conditions give e2 = Ae2 + Be3 and 3e2 = 2Ae2 + 3Be3.
Solving yields A = 0, B = e−1. The solution to the initial value
problem is y = e−1e3x .

(b) The associated polynomial is r2 − 6r + 5 with roots r = 1, 5. The
general solution of the differential equation is y = Aex + Be5x .
The initial conditions give 3 = A + B and 11 = A + 5B. Solving
yields A = 1, B = 2. The solution to the initial value problem is
y = ex + 2e5x .



Solutions to Exercises278

3. (a) The associated polynomial will be (r − 1)(r + 2) = r2 + r − 2.
The differential equation is then y′′ + y′ − 2y = 0.

(b) The associated polynomial will be r(r − 2) = r2 − 2r . The
differential equation is then y′′ − 2y′ = 0.

4. (a) The associated polynomial is r2 + 3r − 10 with roots r = −5, 2.
The solutions of the homogeneous equation are then y1 = e−5x and
y2 = e2x . We solve the equations

v′
1e

−5x + v′
2e

2x = 0

v′
1(−5e−5x) + v′

2(2e2x) = 6e4x.

The solution is v′
1 = [−6/7]e9x , v′

2 = [6/7]e2x . We find then that
yp = v1y1+v2y2 = [1/3]e4x . The general solution of the differential
equation is

y = Ae−5x + Be2x + 1
3e4x.

(b) The associated polynomial is r2 + 4 with roots r = ±2i. The solu-
tions of the homogeneous equation are then y1 = cos 2x and y2 =
sin 2x. We solve the equations

v′
1 cos 2x + v′

2 sin 2x = 0

v′
1(−2 sin 2x) + v′

2(2 cos 2x) = 3 sin x.

The solution is v′
1 = [−3/2] sin x sin 2x, v′

2 = [3/2] sin x cos 2x.
We find then that yp = v1y1 + v2y2 = sin x. The general solution of
the differential equation is

y = A cos 2x + B sin 2x + sin x.

5. (a) Guess a particular solution of the form yp = αx + βx2. Substitute
this into the differential equation and solve for the coefficients. The
result is α − 1/3, β = 1/3. A particular solution is then yp =
[−1/3]x + [1/3]x2.

(b) Guess a particular solution of the form yp = αxe−x + βe−x .
Substitute this into the differential equation and solve for the coef-
ficients. The result is α = 1/4, β = 0. A particular solution is then
yp = [1/4]xex .

6. (a) Write the equation as

y′′ − 2x

x2 − 1
y′ + 2

x2 − 1
y = x2 + 1. (∗)
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We guess that y1 = x is a solution of the homogeneous equation,
and this is verified by a quick calculation. Using the method of
Section 2.4, we seek another solution of the form y2 = v · y1. Here

v(x) =
∫

1

(y1)2
e− ∫

p(x) dx dx,

where p is the coefficient of y′ in (∗). We find that v = x + 1/x.
Thus y2 = x2 + 1.

Now we guess a function of the form yp = αx2 + βx + γ for a
particular solution and find that yp = x2/2 + 1. Thus the general
solution to the differential equation is

y = Ax + B
[
x2 + 1

]
+ x2

2
+ 1.

(b) Write the equation as

y′′ + 2x + 1

x2 + x
y′ + 2x + 1

x(x2 + x)
y = −4x2 − 2x

x2 + x
. (�)

We guess that y1 = x is a solution of the homogeneous equation, and
this is verified by a quick calculation. Using the method of Section
2.4, we seek another solution of the form y2 = v · y1. Here

v(x) =
∫

1

(y1)2
e− ∫

p(x) dx dx,

where p is the coefficient of y′ in (�). We find that v = ln x + 1/x −
1/[2x2] − ln(x + 1). Thus y2 = x ln x + 1 − 1/[2x] − x ln(x + 1).

Now we guess a function of the form yp = αx2 + βx for a par-
ticular solution and find that yp = −x2. Thus the general solution
to the differential equation is

y = Ax + B

[
x ln x + 1 − 1

2x
− x ln(x + 1)

]
− x2.

7. Let y1 ≡ 1. We use the method of Section 2.4, seeking a second solution
of the form y2 = v · y1. Thus

v =
∫

1

y1

2

e
∫

p(x) dx dx,

where p is the coefficient of y′ in the differential equation written in
normal form. It follows that v = −1/[2x2]. Thus y2 = −1/[2x2].
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Since the differential equation is homogeneous, we find that the general
solution is thus

y = A + B
1

2x2
.

8. Let y1 = x2. We use the method of Section 2.4 to seek a second solution
of the form y2 = v · y1, where

v =
∫

1

y1

2

e− ∫
p(x) dx dx,

and p is the coefficient of y′ in the differential equation written in
normalized form. Thus

v =
∫

1

x4
e− ln x dx = −x4

4
.

We conclude that y2 = −x−2/4. Since the equation is homogeneous,
we see that the general solution is

y = Ax2 + Bx−2.

9. (a) The associated polynomial is r2 + 2r + 4 with roots r = −1 ± i
√

3.
Thus the general solution to the differential equation is

y = Ae−x cos
√

3x + Be−x sin
√

3.

(b) The associated polynomial is r2 − 3r + 6 with roots r = 3/2 ±
i
√

15/2. Thus solutions to the homogeneous equation are y =
e3x/2 cos[√15/2]x and y = e3x/2 sin[√15/2]x. For a particu-
lar solution, we guess yp = αx2 + βx + γ . Substituting this
expression into the differential equation and solving, we find that
yp = x/6 + 1/12 and the general solution of the given differential
equation is

y = Ae3x/2 cos[√15/2]x + Be3x/2 sin[√15/2]x + x

6
+ 1

12
.

10. (a) The associated polynomial is r3−3r2+2r with roots r = 0, 1, 2. The
solutions of the homogeneous equation are y1 = e0 ≡ 1, y2 = ex ,
and y3 = e2x . We guess a particular solution of the form yp =
αx3 + βx2 + γ x + δ and find that yp = [1/4]x2 + [3/4]x. Thus the
general solution of the differential equation is

y = A + Bex + Ce2x + 1
4x2 + 3

4x.
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(b) The associated polynomial is r3−3r2+4r−2 with roots r = 1, 1±i.
The general solution of the differential equation is

y = Aex + Bex cos x + Cex sin x.

11. We use Kepler’s Third Law. We have

T 2

a3
= 4π2

GM
.

We must be careful to use consistent units. The gravitational constant
G is given in terms of grams, centimeters, and seconds. The mass of
the sun is in grams. We convert the semimajor axis to centimeters: a =
1200 × 1011 cm = 1.2 × 1014 cm. Then we calculate that

T =
(

4π2

GM
· a3

)1/2

=
(

4π2

(6.637 × 10−8)(2 × 1033)
· (1.2 × 1014)3

)1/2

≈ [5.1393 × 1017]1/2sec

= 7.16889 × 108 sec.

There are 3.16 × 107 seconds in an Earth year. We divide by this number
to find that the time of one orbit is

T ≈ 22.686 Earth years.

Chapter 3
1. (a) We calculate that

lim
j→+∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→+∞

2j+1/(j + 1)!
2j /j ! = lim

j→+∞
2

j + 1
= 0.

It follows that the radius of convergence is 1/0 = +∞.
(b) We calculate that

lim
j→+∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→+∞

2j+1/3j+1

2j /3j
= lim

j→+∞
2

3
= 2

3
.

Hence the radius of convergence is 1/(2/3) = 3/2.
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2. The power series for cos x is

∞∑
j=0

(−1)j
x2j+1!

(2j + 1)! .

We calculate that

lim
j→+∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→+∞

1!/(2(j + 1) + 1)!
1/(2j + 1)!

= lim
j→+∞

1

(2j + 2)(2j + 3)
= 0.

It follows that the radius of convergence for the power series of the cosine
function is +∞.

The power series for sin x is

∞∑
j=0

(−1)j
x2j !
(2j)! .

We calculate that

lim
j→+∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→+∞

1!/(2(j + 1))!
1/(2j)! = lim

j→+∞
1

(2j + 1)(2j + 2)
= 0.

It follows that the radius of convergence for the power series of the sine
function is +∞.

3. With f (x) = ex , we see (for |x| ≤ M) that

|Rn(x)| =
∣∣∣∣∣f (n+1)(ξ)

(n + 1)! xn+1

∣∣∣∣∣ =
∣∣∣∣ eξ

(n + 1)!x
n+1

∣∣∣∣ ≤ eM · Mn+1

(n + 1)! → 0

as n → ∞. Thus the power series for ex converges uniformly on
compact sets.

With g(x) = sin x and w(x) denoting either sine or cosine, we see
(for |x| ≤ M) that

|Rn(x)| =
∣∣∣∣∣g(n+1)(ξ)

(n + 1)! xn+1

∣∣∣∣∣ =
∣∣∣∣ w(ξ)

(n + 1)!x
n+1

∣∣∣∣ Mn+1

(n + 1)! → 0

as n → ∞. Thus the power series for sin x converges uniformly on
compact sets.

The argument for cos x is similar.
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4. (a) We have y = ∑∞
j=0(−1)j x2j /(2j)!, hence

y′′ =
∞∑

j=1

(−1)j 2j (2j − 1)x2j−2/(2j)!

Changing the index of summation yields

y′′ =
∞∑

k=0

(−1)k+1(2k + 2)(2k + 1)x2k/(2k + 2)!

= −
∞∑

k=0

(−1)kx2k/(2k)! = −y.

(b) We have y = ∑∞
j=0(−1)j x2j /((2j)2 · (2j − 2)2 · · · 22). Then∣∣∣∣aj+1

aj

∣∣∣∣ = 1

(2j + 2)2
→ 0

as j → +∞. So the series converges for all x. We calculate that

xy′′ + y′ + xy

= x

∞∑
j=1

(−1)j (2j)(2j − 1)
x2j−2

(2j)2 · (2j − 2)2 · · · 22

+
∞∑

j=1

(−1)j (2j)
x2j−1

(2j)2 · (2j − 2)2 · · · 22

+ x

∞∑
j=0

(−1)j
x2j

((2j)2 · (2j − 2)2 · · · 22)

=
∞∑

j=0

(−1)j+1(2j + 2)(2j + 1)
x2j+1

(2j + 2)2 · (2j)2 · · · 22

+
∞∑

j=0

(−1)j+1(2j + 2)
x2j+1

(2j + 2)2 · (2j)2 · · · 22

+
∞∑

j=0

(−1)j
x2j+1

((2j)2 · (2j − 2)2 · · · 22
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=
∞∑

j=0

[
(−1)j+1(4j2 + 6j + 2 + 2j + 2)

+ (−1)j (2j + 2)2
]

x2j+1

(2j + 2)2 · (2j)2 · · · 22

=
∞∑

j=0

0 x2j+1

= 0.

5. (a) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential
equation then says

∞∑
j=1

jajx
j−1 = 2x

∞∑
j=0

ajx
j .

Changing indices and combining, we find that

∞∑
j=1

[2aj−1 − (j + 1)aj+1]xj = a1.

Solving the recursion gives

a1 = 0

a2 = a0

a3 = 0

a4 = 1

2
a0

a5 = 0

a6 = 1

3 · 2
a0

and so forth. We thus find the solution

y = a0

∞∑
j=0

x2j

j ! = a0e
x2

.
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(b) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential
equation then says

∞∑
j=1

jajx
j−1 +

∞∑
j=0

ajx
j = 1.

Changing indices and combining, we find that

∞∑
j=0

[(j + 1)aj+1 + aj ]xj = 1.

Solving the recursion gives

a1 = 1 − a0

a2 = (−1)
1

2
(1 − a0)

a3 = (−1)2 1

3 · 2
(1 − a0)

a4 = (−1)3 1

4 · 3 · 2
(1 − a0)

and so forth. We thus find the solution

y = 1 + (1 − a0)

∞∑
j=0

(−x)j

j ! = 1 + (1 − a0)e
−x.

(c) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential
equation then says

∞∑
j=1

jajx
j−1 −

∞∑
j=0

ajx
j = 2.

Changing indices and combining, we find that

∞∑
j=0

[(j + 1)aj+1 − aj ]xj = 2.
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Solving the recursion gives

a1 = a0 + 2

a2 = 1

2
(a0 + 2)

a3 = 1

3 · 2
(a0 + 2)

a4 = 1

4 · 3 · 2
(a0 + 2)

and so forth. We thus find the solution

y = −2 + (a0 + 2)

∞∑
j=0

xj

j ! = −2 + (a0 + 2)ex.

6. (a) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential
equation then says

x

∞∑
j=1

jajx
j−1 =

∞∑
j=0

ajx
j .

Changing indices and combining, we find that

∞∑
j=1

[jaj − aj ]xj = a0.

Solving the recursion gives

a0 = 0

a1 = arbitrary

aj = 0 for all j ≥ 2.

We thus find the solution

y = a1x.

(b) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential

equation, rewritten as xy′ − y = x3, then says

x

∞∑
j=1

jajx
j−1 −

∞∑
j=0

ajx
j = x3.
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Changing indices and combining, we find that

−a0 +
∞∑

j=1

[jaj − aj ]xj = x3.

Solving the recursion gives

a0 = 0

a1 = arbitrary

a2 = 0

a3 = 1

2

aj = 0 for j ≥ 4.

We thus find the solution

y = a1x + x3

2
.

7. (a) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1 and y′′ = ∑∞
j=2 j (j −

1)ajx
j−2. The differential equation then says

∞∑
j=2

j (j − 1)ajx
j−2 + x

∞∑
j=1

jajx
j−1 +

∞∑
j=0

ajx
j = 0.

Changing indices and combining, we find that
∞∑

j=1

[(j + 2)(j + 1)aj+2 + (j + 1)aj ]xj = −2a2 − a0.

Solving the recursion gives

a2 = (−1)
1

2
a0

a3 = −1

3
a1

a4 = (−1)2 1

4 · 2
a0

a5 = (−1)2 1

5 · 3
a1

a6 = (−1)3 1

6 · 4 · 2
a0
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and so forth. We thus find the solution

y = a0 + a0

∞∑
j=1

(−1)j
x2j

2j · (2j − 2) · · · 2

+ a1

∞∑
j=1

(−1)j
x2j−1

(2j − 1) · (2j − 3) · · · 1
.

(b) For the series preceded by a0, the ratio test yields∣∣∣∣1/[(2j + 2)(2j) · · · 2]
1/[2j (2j − 2) · · · 2]

∣∣∣∣ = 1

2j + 2
→ 0.

Thus the radius of convergence is +∞.

The calculation for the other series is similar.

8. (a) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1 and y′′ = ∑∞
j=2 j (j −

1)ajx
j−2. The differential equation then says

∞∑
j=2

j (j − 1)ajx
j−2 +

∞∑
j=0

ajx
j = x2.

Changing indices and combining, we find that

∞∑
j=0

[(j + 2)(j + 1)aj+2 + aj ]xj = x2.

Solving the recursion gives

a2 = (−1)
1

2 · 1
a0

a3 = (−1)
1

3 · 2
a1

a4 = (−1)2 1

4 · 3 · 2 · 1
a0 + 1

4 · 3

a5 = (−1)2 1

5 · 4 · 3 · 2 · 1
a1

a6 = (−1)3 1

6 · 5 · 4 · 3 · 2 · 1
a0 + 1

6 · 5 · 4 · 3
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and so forth. We thus find the solution

y = a0

∞∑
j=0

(−1)j
1

(2j)!x
2j + a1

∞∑
j=0

(−1)j
1

(2j + 1)!x
2j+1

+
∞∑

j=2

1

2j (2j − 1) · · · 3
x2j .

(b) If y = ∑∞
j=0 ajx

j , then y′ = ∑∞
j=1 jajx

j−1. The differential
equation then says

∞∑
j=2

j (j − 1)ajx
j−2 +

∞∑
j=1

jajx
j−1 = −x.

Changing indices and combining, we find that

∞∑
j=0

[(j + 2)(j + 1)aj+2 + (j + 1)aj+1]xj = −x.

Solving the recursion gives

a2 = (−1)
1

2 · 1
a1

a3 = (−1)2 1

3 · 2
a1 + (−1)

1

3 · 2

a4 = (−1)3 1

4 · 3 · 2
a1 + (−1)2 1

4 · 3 · 2

a5 = (−1)4 1

5 · 4 · 3 · 2
a1 + (−1)3 1

5 · 4 · 3 · 2

and so forth. We thus find the solution

y = a0 + a1

∞∑
j=2

(−1)j−1 1

j !x
j +

∞∑
j=3

(−1)j
1

j ! .
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Chapter 4
1. We calculate that

a0 = 1

π

∫ π/2

−π

π dx = 3π

2
,

aj = 1

π

∫ π/2

−π

π · cos jx dx =
[

1 + (−1)j−1

2

]
(−1)[j/2]

j
for j ≥ 1,

bj = 1

π

∫ π/2

−π

π · sin jx dx = −
[

1 + (−1)j

2

]
(−1)[j/2]

j
for j ≥ 1.

Thus the Fourier series is

f (x) = 3π

4
+

∞∑
j=1

[
1 + (−1)j−1

2

]
(−1)[j/2]

j
cos jx

+
∞∑

j=1

−
[

1 + (−1)j

2

]
(−1)[j/2]

j
sin jx.

2. We calculate that

a0 = 1

π

∫ π/2

0
1dx = 1

2
,

aj = 1

π

∫ π/2

0
1 · cos jx dx =

[
1 + (−1)j−1

2

]
(−1)[j/2]

jπ
for j ≥ 1,

bj = 1

π

∫ π/2

0
1 · sin jx dx = −

[
1 + (−1)j

2

]
(−1)[j/2]

jπ
for j ≥ 1.

Thus the Fourier series is

f (x) = 1

4
+

∞∑
j=1

[
1 + (−1)j−1

2

]
(−1)[j/2]

jπ
cos jx

+
∞∑

j=1

−
[

1 + (−1)j

2

]
(−1)[j/2]

jπ
sin jx.
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3. We calculate that

a0 = 1

π

∫ π

0
sin x dx = 2

π
,

aj = 1

π

∫ π

0
sin x cos jx dx = 1

j2 + 1

1

π
((−1)j + 1) for j ≥ 1,

bj = 1

π

∫ π

0
sin x cos jx dx = 0.

Thus the Fourier series is

f (x) = 1

π
+

∞∑
j=1

1

j2 + 1

1

π
((−1)j + 1) cos jx.

4. We calculate that

a0 = 1

π

∫ 0

−π

−π dx+ 1

π

∫ π

0
x dx =−π + π

2
=−π

2
,

aj = 1

π

∫ 0

−π

−π cosjx dx+ 1

π

∫ π

0
x cosjx dx = (−1)j −1

πj2
for j ≥1,

bj = 1

π

∫ 0

−π

−π sinjx dx+ 1

π

∫ π

0
x sinx dx = 1+2(−1)j+1

j
.

Thus the Fourier series is

f (x) = −π

4
+

∞∑
j=1

(−1)j − 1

πj2
cos jx +

∞∑
j=1

1 + 2(−1)j+1

j
sin jx.

5. We calculate that

a0 = 1

π

∫ π

0
x2 dx = π2

3
,

aj = 1

π

∫ π

0
x2 cos jx dx = 2(−1)j

j2
for j ≥ 1,

bj = 1

π

∫ π

0
x2 sin jx dx = 2

πj3
[(−1)j − 1] − π(−1)j

j
.
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Thus the Fourier series is

f (x) = π2

6
+ 2

∞∑
j=1

(−1)j
cos jx

j2

+ π

∞∑
j=1

(−1)j+1 sin jx

j
− 4

π

∞∑
j=1

sin(2j − 1)x

(2j − 1)3
.

6. We calculate that (−x)5 sin(−x) = x5 sin x, so this function is even.
We calculate that e−x �= ex , e−x �= −ex , so this function is neither

even nor odd.
We calculate that (sin(−x))3 = −(sin x)3, so this function is odd.
We calculate that sin(−x)2 = sin x2, so this function is even.
We calculate that (−x) + (−x)2 + (−x)3 �= x + x2 + x3, (−x) +

(−x)2 + (−x)3 �= −(x + x2 + x3), so this function is neither even
nor odd.

We calculate that ln
1 + (−x)

1 − (−x)
�= ln

1 + x

1 − x
, ln

1 + (−x)

1 − (−x)
�=

− ln
1 + x

1 − x
, so this function is neither even nor odd.

7. We write

f (x) = 1

2

[
f (x) + f (−x)

2

]
+ 1

2

[
f (x) − f (−x)

2

]
≡ fe(x) + fo(x).

Then

fe(−x) = 1

2

[
f (−x) + f (x)

2

]
= fe(x),

so that fe is even. Also

fo(−x)= 1

2

[
f (−x)−f (−(−x))

2

]
=−1

2

[
f (x)−f (−x)

2

]
=−fo(x),

so that fo is odd.

8. We calculate the sine coefficients of f̃ :

bj = 2

π

∫ π

0

π

4
sin jx dx = 1

2

(− cos jx)

j

∣∣∣∣π
0

= 1

2

[
(−1)j+1 + 1

2

]
.

Thus the even coefficients vanish and the odd (2j + 1)th coefficients
are 1/(2j + 1). We see then that

π

4
= sin x + sin 3x

3
+ sin 5x

5
+ · · · .
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Evaluating this series expansion at x = π/2 gives a famous series
representation for π :

π

4
= 1 − 1

3
+ 1

5
− + · · · .

The cosine coefficients of ˜̃f are

a0 = π

4

and, for j ≥ 1,

aj = 2

π

∫ π

0

π

4
sin jx dx = 1

2

sin jx

j

∣∣∣∣π
0

= 0.

Thus the cosine expansion of f is

f (x) = π

4
.

9. We calculate that

bj = 2

π

∫ π

0
sin x sin jx dx

= 2

π
(− cos x) sin jx

∣∣∣∣π
0

+ 2

π

∫ π

0
cos x(j cos jx) dx

= 2

π
sin x(j cos jx)

∣∣∣∣π
0

− 2

π

∫ π

0
sin x(−j2 sin jx) dx.

It follows that bj = 0 for j ≥ 2. Also we calculate easily that b1 = 1.
Thus the sine series expansion of f (x) = sin x is

f (x) = sin x.

A similar calculation shows that the cosine series expansion of f (x) =
sin x is

f (x) = cos x =
∞∑

j=2

1

1 − j2

2

π
[(−1)j + 1] cos jx.

10. (a) We calculate that

a0 =
∫ 0

−1
(1 + x) dx +

∫ 1

0
(1 − x) dx = 1
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and

aj =
∫ 0

−1
(1 + x) cos(jπx) dx +

∫ 1

0
(1 − x) cos(jπx) dx

= sin(jπx)

nπ
(1 + x)

∣∣∣∣0−1
−
∫ 0

−1

sin(jπx)

nπ
dx

+ sin(jπx)

jπ
(1 − x)

∣∣∣∣1
0
−
∫ 1

0

sin(jπx)

nπ
(−1) dx

= 2

j2π2

[
1 + (−1)j

]
.

A similar calculation shows that

bj = 0 for all j.

As a result,

f (x) = 1 +
∞∑

j=1

2

j2π2

[
1 + (−1)j

]
cos jx.

(b) We calculate that

a0 = 1

2

∫ 0

−2
−x dx + 1

2

∫ 2

0
x dx = 1

and

aj = 1

2

∫ 0

−2
(−x) cos jx dx + 1

2

∫ 2

0
x cos jx dx

=
∫ 2

0
x cos jx dx

= sin(jπx/2)

jπ/2
· x

∣∣∣∣2
0
−
∫ 2

0

sin(jπx/2)

jπ/2
dx

= 2

j2π2
[(−1)j − 1].

By the oddness of |x| sin jx, we see that bj = 0 for all j . As a result,

f (x) = 1 +
∞∑

j=1

2

j2π2
[(−1)j − 1] cos jx.
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Chapter 5
1. (a) Since y(0) = 0, the only relevant solutions to the differential

equation are yλ(x) = sin λx. Since y(π/2) = 0, we find that
λ = 4, 16, 36, . . . , (2n)2, . . . . The corresponding eigenfunctions are
sin 2x, sin 4x, sin 6x, etc.

(b) Since y(0) = 0, the only relevant solutions to the differential
equation are yλ(x) = sin λx. Since y(2π) = 0, we find that
λ = 1/4, 1, 9/4, . . . , n2/4, . . . . The corresponding eigenfunctions
are sin(1/2)x, sin x, sin(3/2)x, etc.

(c) Since y(0) = 0, the only relevant solutions to the differential equa-
tion are yλ(x) = sin λx. Since y(1) = 0, we find that λ = π2, 4π2,
9π2, . . . , n2π2, . . . . The corresponding eigenfunctions are sin πx,
sin 2πx, sin 3πx, etc.

2. (a) We need the sine series expansion of f :

bj = 2

π

∫ π/2

0

2x

π
sin jx dx + 2

π

∫ π

π/2

2(π − x)

π
dx

= 4

π2

− cos jx

j
· x

∣∣∣∣π/2

0
+ 4

π2

∫ π/2

0

cos jx

j
dx

+ 4

π2

− cos jx

j
· (π − x)

∣∣∣∣π
π/2

+ 4

π2

∫ π

π/2

cos jx

j
· (−1) dx

= 4

π2j2
[(−1)j+1 + 1] · (−1)[j/2].

It follows that the solution of the vibrating string for this data is

y(x, t) =
∞∑

j=1

[
4

π2j2
[(−1)j+1 + 1] · (−1)[j/2]

]
sin jx cos j t.

(b) We need the sine series expansion of f :

bj = 2

π

∫ π

0

1

π
x(π − x) sin jx dx

= 2

π2

(
−cos jx

j
(xπ − x2)

)∣∣∣∣π
0

+ 2

π2

∫ π

0

cos jx

j
(π − 2x) dx

= 4

π2

[
1

j3
− (−1)j

j3

]
.
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It follows that the solution of the vibrating string for this data is

y(x, t) =
∞∑

j=1

(
4

π2

[
1

j3
− (−1)j

j3

])
sin jx cos j t.

3. It is easy to calculate that

b1 = c sin x

and all other b’s are equal to zero. Thus the solution of the vibrating string
with this initial data is

y(x, t) = c · sin x cos t.

We see that, for fixed time t = t0, the curve has the shape

y(x, t0) = [c cos t0] sin x.

Plainly this is a standard sine curve with modified amplitude.

4. We pose a solution of the form y(x, t) = α(x)β(t). Plugging this into the
differential equation yxx = ytt (we take a = 1 for simplicity), we find that

α′′(x)β(t) = α(x)β ′′(t).

This leads to

α′′(x)

α(x)
= β ′′(t)

β(t)
.

Thus we have the differential equations

α′′(x) − µα(x) = 0 (a)

and

β ′′(t) − µβ(t) = 0. (b)

Of course the boundary conditions tell us that µ = −λ, where λ > 0.
And, as usual, the eigenfunctions for equation (a) are sin

√
λx. Thus

y(x, t) = sin
√

λx[A cos
√

λt + B sin
√

λt].
But now the fact that u(x, 0) = 0 tells us that A = 0. Hence

u(x, t) = B sin
√

λx sin
√

λt.

As usual, λ = j2 for j = 1, 2, . . . . So the general solution is a linear
combination of terms sin

√
λx sin

√
λt .
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5. Let bj be the coefficients of the sine series expansion of the function f (x).
Then the solution of the heat equation will be

y(x, t) =
∞∑

j=1

bj e
−j2t sin jx.

6. (a) We calculate the Fourier series for the function f :

aj = 1

π

∫ π

−π

cos
θ

2
cos jθ dθ

= 1

π

∫ π/2

−π/2
(cos ψ)(cos 2jψ)2 dψ

= 2

π
sin ψ cos 2jψ

∣∣∣∣π/2

−π/2
− 2

π

∫ π/2

−π/2
sin ψ(−2j sin 2jψ) dψ

= 4

π
(−1)j + 4j2

π

∫ π/2

−π/2
2 cos ψ cos 2jψ dψ

= 4(−1)j

π(1 − 4j2)
.

A similar calculation shows that

bj = 0 for all j.

Thus the solution to the Dirichlet problem is

w(r, θ) = 2

π
+

∞∑
j=1

rj 4(−1)j

π(1 − 4j2)
cos jθ.

(b) We calculate the Fourier series for the function f :

aj = 1

π

∫ π

−π

θ cos jθ dθ

= 1

πj
(sin jθ) · θ

∣∣∣∣π−π

− 1

πj

∫ π

−π

sin jθ dθ

= 0.
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Similarly,

bj = 2(−1)j+1

j
.

Thus the solution to the Dirichlet problem is

w(r, θ) =
∞∑

j=1

rj 2(−1)j+1

j
sin jθ.

(c) We calculate the Fourier series for the function f :

a1 = 1

π

∫ π

0
sin θ cos θ dθ = 0,

aj = 1

π

∫ π

0
sin θ cos jθ dθ

= −cos θ cos jθ

π

∣∣∣∣
0
π + 1

π

∫ π

0
cos θ(−j sin jθ) dθ

= j2 1

π

∫ π

0
sin θ cos jθ dθ,

hence

aj = 1

1 − j2

(
1 + (−1)j

π

)
for j ≥ 1 for j �= 1,

and a similar calculation shows that

bj = 0 for all j.

Thus the solution to the Dirichlet problem is

w(r, θ) = 2

π
+

∞∑
j=2

rj 1

1 − j2

(
1 + (−1)j

2

)
cos jθ.

7. Using polar coordinates, if the point (r, θ) lies in the disc D(0, R) with
0 ≤ r < R, then the point (r/R, θ) lies in D(0, 1) with 0 ≤ r/R < 1.
The process can be reversed as well. Thus if f (θ) is a boundary function
for D(0, R) with coefficients aj , bj of its Fourier series, then

(r, θ) �→
( r

R
, θ
)

�→ a0

2
+

∞∑
j=1

( r

R

)j [
aj cos jθ + bj sin jθ

]
solves the Dirichlet problem on D(0, R).
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8. We calculate the sine series of f :

bj = 2

π

∫ π/2

0
x sin jx dx + 2

π

∫ π

π/2
(π − x) sin x dx

= 2

π

(− cos jx

j

)
x

∣∣∣∣π/2

0
+ 2

π

∫ π/2

0

cos jx

j
dx

+ 2

π

(− cos jx

j

)
(π − x)

∣∣∣∣π
π/2

+ 2

π

∫ π

π/2

cos jx

j
· (−1) dx

= 2

j2π

[
(−1)j+1 + 1

]
(−1)[j/2].

It follows that the solution of the vibrating string for this data is

y(x, t) =
∞∑

j=1

2

j2π

[
(−1)j+1 + 1

]
(−1)[j/2] sin jx cos j t.

9. We calculate the Fourier series of f :

a0 = 1

π

∫ 0

−π

2θ dθ = −π,

aj = 1

π

∫ 0

−π

2θ cos jθ dθ

= 1

π

sin jθ

j
· 2θ

∣∣∣∣0−π

− 1

π

∫ 0

−π

sin jθ

j
· 2 dθ

= 2

j2π
[1 + (−1)j+1],

bj = 1

π

∫ 0

−π

2θ sin jθ dθ

= 1

π

− cos jθ

j
· 2θ

∣∣∣∣0−π

+ 1

π

∫ 0

−π

cos jθ

j
· 2 dθ

= 2(−1)j+1

j
.

As a result, the solution of the Dirichlet problem with this data is

w(r, θ) = −π +
∞∑

j=1

rj

[
2

j2π
[1 + (−1)j+1] cos jθ + 2(−1)j+1

j
sin jθ

]
.
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Chapter 6
1. We calculate that

L[xn](p) =
∫ ∞

0
xne−px dx

= e−px

−p
xn

∣∣∣∣∞
0

+
∫ ∞

0

e−px

p
· nxn−1 dx

= · · ·

= n!
pn

∫ ∞

0
e−px dx

= n!
pn+1

;

L[eax](p) =
∫ ∞

0
eaxe−px dx =

∫ ∞

0
e(a−p)x dx = 1

p − a
;

L[sin ax](p) =
∫ ∞

0
sin ax e−px dx

= e−px

−p
sin ax

∣∣∣∣∞
0

+
∫ ∞

0

e−px

p
(a cos ax) dx

= a

p

∫ ∞

0
cos ax e−px dx

= a

p

e−px

−p
cos ax

∣∣∣∣∞
0

+ a

p

∫ ∞

0

e−px

p
(−a sin ax) dx

= a

p2
− a2

p2
L[sin ax](p).

It follows then that

L[sin ax](p) = a

p2 + a2
.
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2. (a) We calculate that

L[sinh ax](p) = L

[
ea − e−ax

2

]
= 1

2

[
L[eax](p) − L[e−ax](p)

]
= 1

2

[
1

p − a
− 1

p + a

]
= a

p2 − a2
.

(b) We calculate that

L[cosh ax](p) = L

[
ea + e−ax

2

]
= 1

2

[
L[eax](p) + L[e−ax](p)

]
= 1

2

[
1

p − a
+ 1

p + a

]
= p

p2 − a2
.

3. (a) L[10](p) = 10L[1](p) = 10

p

(b) L[x5 + cos 2x](p) = L[x5](p) + L[cos 2x](p) = 5!
p6

+ p

p2 + 4

(c) L[2e3x − 4 sin 5x](p) = 2L[e3x](p) − 4L[sin 5x](p) = 2

p − 3
−

20

p2 + 25
(d) L[4 sin x cos x + 2e−x](p) = 2L[2 sin 2x](p) + 2L[e−x](p) =

4

p2 + 4
+ 2

p + 1

(e) L[x6 sin2 3x + x6 cos2 3x](p) = L[x6] = 6!
p7 .

4. (a) L[x5e−2x](p) = L[e−2xx5](p) = L[x5](p + 2) = 5!
(p + 2)6



Solutions to Exercises302

(b) L[(1 − x2)e−x](p) = L[e−x](p) − L[e−xx2](p) = 1

p + 1
−

L[x2](p + 1) = 1

p + 1
− 2!

(p + 1)3

(c) L[e3x cos 2x](p) = L[cos 2x](p − 3) = p

(p − 3)2 + 4

5. (a) L−1
[

6

p2 + 9

]
(x) = 2 sin 3x, hence L−1

[
6

(p + 2)2 + 9

]
=

e−2x sin 3x

(b) L−1[3!/p4](x) = x3, hence L−1[12/p4](x) = 2x3 and
L−1[12/(p + 3)4](x) = 2e−3xx3

(c) L−1
[

p + 3

p2 + 2p + 5

]
(x) = L−1

[
p + 3

(p + 1)2 + 4

]
=

L−1
[

p + 1

(p + 1)2 + 4

]
+ L−1

[
2

(p + 1)2 + 4

]
. As a result,

L−1
[

p + 3

p2 + 2p + 5

]
(x) = e−x cos 2x + sin 2x

6. (a) The Laplace transform of the differential equation is

pY − y(0) + Y = 1

p − 2
,

hence

pY + Y = 1

p − 2
.

We find that

Y = 1

(p − 2)(p + 1)
= 1/3

p − 2
+ −1/3

p + 1
.

It follows that

y = 1
3e2x − 1

3e−x.

(b) The Laplace transform of the differential equation is

p2Y − py(0) − y′(0) − 4(pY − y(0)) + 4Y = 0,

hence

Y · (p2 − 4p + 4) = 3
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or

Y = 3 · 1

(p − 2)2
.

It follows that

y = 3xe2x.

(c) The Laplace transform of the differential equation is

p2Y − py(0) − y′(0) + 2[pY − y(0)] + 2Y = 2,

hence

Y = 3

p2 + 2p + 2
= 1

p
− p + 1

(p + 1)2 + 1
.

It follows that

y = 1 − e−x cos x.

7. The Laplace transform of the integral equation is

pY − y(0) + 4Y + 5
Y

p
= 1

p + 1
,

hence

Y

(
p + 4 + 5

p

)
= 1

p + 1

or

Y = 1

2

p + 2

(p + 2)2 + 1
+ 3/2

(p + 2)2 + 1
+ −1/2

p + 1
.

It follows that

y = 1

2
e−2x cos x + 3

2
e−2x sin x − 1

2
e−x.
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8. (a) We calculate that

L[x2 sin ax](p) = − d

dp
L[sin ax](p)

= d2

dp2
L[sin ax](p)

= d2

dp2

(
a

p2 + a2

)

= 6ap2 − 2a3

(p2 + a2)3
.

(b) We calculate that

L[xex](p) = − d

dp
L[ex](p)

= − d

dp

(
1

p − 1

)
= 1

(p − 1)2
.

9. (a) Taking the Laplace transform, we find that

Y = 1

p
− L[x](p) · Y = 1

p
− 1

p2
Y,

hence

Y = p

p2 + 1
.

We conclude that

y = cos x.

(b) We calculate the Laplace transform:

Y = L

[
1 +

∫ x

0
e−t y(t) dt

]
(p − 1)

= 1

p − 1
+ L[e−t y(t)](p − 1)

p − 1

= 1

p − 1
+ Y (p)

p − 1
.
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It follows that

Y = 1

p − 2

so that

y = e2x.

10. (a) The convolution is∫ x

0
sin at dt = −cos at

a

∣∣∣∣x
0

= −cos ax

a
+ 1

a
.

(b) The convolution is∫ x

0
ea(x−t)ebt dt = eax

∫ x

0
e(b−a)t dt = ebx

b − a
− eax

b − a
.

11. Taking the Laplace transform, we find that

(p2Y − pA − B) − 5(pY − A) + 4Y = 0,

hence

Y = pA − 5A + B

p2 − 5p + 4
.

As a result,

Y = 1

3
· pA + (−5A + B)

p − 4
− 1

3
· pA + (−5A + B)

p − 1

= −A + B

3
· 1

p − 4
− −4A + B

3
· 1

p − 1
.

It follows that

y = −A + B

3
e4x − −4A + B

3
ex.

12. We write

g(t) = u(t − 3) · (t − 1),
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where u is the unit step function. Then

L[g](p) = L[tu(t − 3)](p) − L[u(t − 3)](p)

= − d

dp
L[u(t − 3)](p) − L[u(t − 3)](p)

= − d

dp

(
e−3pL[u](p)

)
− e−3pL[u](p)

= 2e−3pL[u](p) + e−3pL[tu(t)](p)

= 2e−3pL[u](p) + e−3pL[t](p)

= 2e−3pL[u](p) + e−3p 1

p2

= e−3p

(
2p + 1

p2

)
.

Chapter 7
1. (a) Of course x0 = 0, y0 = 1. We calculate that

y1 = 1 + 0.1(2 · 0 + 2 · 1) = 1.2,

y2 = 1.2 + 0.1(2 · 0.1 + 2 · 1.2) = 1.46,

y3 = 1.46 + 0.1(2 · 0.2 + 2. · 1.46) = 1.792.

Thus 1.792 is our Euler approximation to y(0.3).
The initial value problem y′ − 2y = 2x, y(0) = 1, may be solved

explicitly with solution y = −x − 1/2 + [3/2]e2x . We see then that
the exact value of y(0.3), to three decimal places, is y(0.3) ≈ 1.933.
The approximation is off by about 8 percent.

(b) Of course x0 = 0, y0 = 1. We calculate that

y1 = 1 + 0.1 · 1

1
= 1.1,

y2 = 1.1 + 0.1 · 1

1.1
= 1.1909,

y3 = 1.1909 + 0.1 · 1

1.1909
= 1.275.

Thus 1.275 is our Euler approximation to y(0.3).
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The initial value problem y′ = 1/y, y(0) = 1, may be solved
explicitly with solution y = √

2x + 1. We see that the exact value of
y(0.3), to three decimal places, is y(0.3) ≈ 1.265. The approximation
is off by about 0.8 percent.

2. (a) From Exercise 1(a) we know that the explicit solution of the initial
value problem is

y = −x − 1

2
+ 3

2
e2x.

It follows that

y′′ = 6e2x

and

|y′′| ≤ 6e2.

Then

|εj | ≤ 6e2h2

2
= 3e2h2.

Finally, the total discretization error is

|En| ≤ 3e2h2

h
= 3e2h = 3e2 · 0.2 ≈ 4.433.

(b) From Exercise 1(b) we know that the explicit solution of the initial
value problem is

y = √
2x + 1.

It follows that

y′′ = −(2x + 1)−3/2

and

|y′′| ≤ 1.

Then

|εj | ≤ 1 · h2

2
.

Finally, the total discretization error is

|En| ≤ h2/2

h
= h

2
= 0.1.
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3. (a) Of course x0 = 0, y0 = 1. We calculate that z1 = 1.2 and

y1 = 1 + 0.1

2
[(2 · 0 + 2 · 1) + (2 · 0.1 + 2 · 1.2)] = 1.23.

Also z2 = 1.496 and

y2 =1.23+ 0.1

2
[(2·0.1+2·1.23)+(2·0.2+2·1.496)]=1.533.

Finally, z3 = 1.879 and

y3 =1.533+ 0.1

2
[(2·0.2+2·1.533)+(2·0.3+2·1.879)]=1.924.

Thus 1.924 is our improved Euler approximation to y(0.3).
We see from Exercise 1(a) that the exact value, accurate to three

decimal places, of y(0.3) is y(0.3) = 1.933. The approximation is off
by about 0.5 percent.

(b) Of course x0 = 0, y0 = 1. We calculate that z1 = 1.1 and

y1 = 1 + 0.1

2

[
1

1
+ 1

1.1

]
= 1.095.

Also z2 = 1.186 and

y2 = 1.095 + 0.1

2

[
1

1.095
+ 1

1.186

]
= 1.183.

Finally, z3 = 1.268 and

y3 = 1.183 + 0.1

2

[
1

1.183
+ 1

1.268

]
= 1.265.

Thus 1.265 is our improved Euler approximation to y(0.3).
We see from Exercise 1(b) that the exact value, accurate to three

decimal places, of y(0.3) is y(0.3) = 1.265. The approximation
agrees with the exact answer to three decimal places.

4. (a) Of course x0 = 0, y0 = 1. We calculate that

m1 = (0.1) · f (0, 1) = (0.1) · (2 · 0 + 2 · 1) = 0.2,

m2 = (0.1) · f (0.05, 1.1) = 0.23,

m3 = (0.1) · f (0.05, 1.115) = 0.233.

m4 = (0.1) · f (0.1, 1.233) = 0.267.
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Thus

y1 = 1 + 1
6 (0.2 + 0.46 + 0.466 + 0.267) = 1.232.

Now x1 = 0.1, y1 = 1.232. We calculate that

m1 = (0.1) · f (0.1, 1.232) = 0.266,

m2 = (0.1) · f (0.15, 1.365) = 0.303,

m3 = (0.1) · f (0.15, 1.384) = 0.3068,

m4 = (0.1) · f (0.2, 1.5388) = 0.348.

Thus

y2 = 1.232 + 1
6 (0.266 + 0.606 + 0.6136 + 0.348) = 1.5376.

Now x2 = 0.2, y2 = 1.5376. We calculate that

m1 = (0.1) · f (0.2, 1.5376) = 0.3476,

m2 = (0.1) · f (0.25, 1.712) = 0.3924,

m3 = (0.1) · f (0.25, 1.734) = 0.3968,

m4 = (0.1) · f (0.3, 1.9348) = 0.447.

Thus

y3 = 1
6 (0.3476 + 0.785 + 0.794 + 0.447) = 1.934.

We know from Exercise 1(a) that the exact value of y(0.3) is 1.933.
The approximation is off by about 0.05 percent.

(b) Of course x0 = 0, y0 = 1. We calculate that

m1 = (0.1) · f (0, 1) = (0.1) · f (0, 1) = 0.1,

m2 = (0.1) · f (0.05, 1.05) = 0.0952,

m3 = (0.1) · f (0.05, 1.0476) = 0.0955,

m4 = (0.1) · f (0.1, 1.0955) = 0.09128.

Thus

y1 = 1 + 1
6 (0.1 + 0.1904 + 0.191 + 0.09128) = 1.0954.
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Now x1 = 0.1, y1 = 1.0954. We calculate that

m1 = (0.1) · f (0.1, 1.0954) = 0.09129,

m2 = (0.1) · f (0.15, 1.14105) = 0.0876,

m3 = (0.1) · f (0.15, 1.1392) = 0.08778,

m4 = (0.1) · f (0.2, 1.18318) = 0.08452.

Thus

y2 =1.232+ 1
6 (0.09129+0.1752+0.17556+0.08452)=1.1832.

Now x2 = 0.2, y2 = 1.1832. We calculate that

m1 = (0.1) · f (0.2, 1.1832) = 0.08452,

m2 = (0.1) · f (0.25, 1.22596) = 0.08157,

m3 = (0.1) · f (0.25, 1.2245) = 0.08167,

m4 = (0.1) · f (0.3, 1.2654) = 0.07903.

Thus

y3 =1.1832+ 1
6 (0.08448+0.16314+0.16334+0.7903)=1.265.

We know from Exercise 1(b) that the exact value of y(0.3) is 1.265.
The approximation is precisely accurate to three decimal places.

5. Of course x0 = 0, y0 = 2. We calculate that

y1 = 2 + 0.01f (0, 2) = 1.96,

y2 = 1.96 + 0.01f (0.1, 1.96) = 1.9209.

The initial value problem y′ = x − 2y, y(0) = 2, may be solved
explicitly with solution y = x/2 − 1/4 + [9/4]e−2x . We see then that
the exact value of y(0.3), to three decimal places, is y(0.3) ≈ 1.922.
The approximation is off by about 0.05 percent.

6. Of course x0 = 0, y0 = 2. We calculate that

z1 = 2 + 0.01f (0, 2) = 1.96,

y1 = 2 + 0.005[f (0, 2) + f (0.01, 1.96)] = 1.96045,

z2 = 1.96045 + 0.01f (0.01, 1.96045) = 1.92134,

y2 = 1.96045 + 0.005[f (0.01, 1.96045) + f (0.02, 1.92134)] = 1.922.
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Comparing to the exact answer (to three decimal places) from Exercise 5,
we see that the improved Euler method gives the precise answer to three
decimal places.

7. Of course x0 = 0, y0 = 2. We calculate that

m1 = 0.01f (0, 2) = −0.04,

m2 = 0.01f (0.005, 1.98) = −0.03955,

m3 = 0.01f (0.005, 1.98023) = −0.03955,

m4 = 0.01f (0.01, 1.96045) = −0.039009.

It follows that

y1 = 2 + 1
6 [−0.04 − 0.0791 − 0.0791 − 0.039009]

= 2 − 0.03993 = 1.96046.

Next we calculate y2. Now

m1 = 0.01f (0.01, 1.96046) = −0.0391,

m2 = 0.01f (0.01, 1.94091) = −0.0387,

m3 = 0.01f (0.01, 1.94111) = −0.03872,

m4 = 0.01f (0.02, 1.92174) = −0.03823.

It follows that

y2 = 1.96046 + 1
6 [−0.0391 − 0.0774 − 0.07744 − 0.03823]

= 1.9218.

Comparing with the exact answer (to three decimal places) in Exercise 5,
we see that this solution is also accurate to three decimal places.



Solutions to Exercises312

Chapter 8

1. (a)

{
y′ = z

z′ = xz + xy.

(b)

⎧⎪⎨⎪⎩
y′ = z

z′ = w

w′ = w − x2z2.

(c)

{
y′ = z

z′ = xz + x2y.

2. (a) We check that

4e4t = d

dt
(e4t ) = e4t + 3e4t

and

4e4t = d

dt
(e4t ) = 3e4t + e4t ,

hence the first pair is a solution of the system.

Likewise, we check that

−2e−2t = d

dt
(e−2t ) = e−2t + 3(e−2t )

and

2e−2t = d

dt
(−e−2t ) = 3e−2t + (−e−2t ),

hence the second pair is a solution of the system.

(b) Set

X(t) = Ae4t + Be−2t ,

Y (t) = Ae4t − Be−2t .

The initial conditions give

5 = A + B

1 = A − B.
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It follows that A = 3, B = 2. Hence the particular solution we seek is

X = 3e4t + 2e−2t

Y = 3e4t − 2e−2t .

3. (a) For the first pair, we check that

8e4t = dx

dt
= 2e4t + 2 · 3e4t

12e4t = dy

dt
= 3 · 2e4t + 2 · 3e4t .

For the second pair, we check that

−e−t = e−t + 2(−e−t )

e−t = 3(e−t ) + 2(−e−t ).

(b) We calculate that

3 = dx

dt
= (3t − 2) + 2(−2t + 3) + t − 1

−2 = dy

dt
3(3t − 2) + 2(−2t + 3) − 5t − 2.

The general solution is then

X = (3t − 2) + 2Ae4t + Be−t

Y = (−2t + 3) + Ae−t + B(−e−t ).

4. (a) We set

0 = det

(−3 − m 4
−2 3 − m

)
= m2 − 1,

hence m = ±1. When m = 1 we have the algebraic system

−4A + 4b = 0

−2A + 2B = 0

with solutions A = 1, B = 1. This leads to the solution set x = et ,
y = et for the system of differential equations. When m = −1 we
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have the algebraic system

−2A + 4B = 0

−2A + 4B = 0

with solutions A = 2, B = 1. This leads to the solution set x = 2e−t ,
y = e−t .

(b) This system is uncoupled. The solution of the first equation is
x(t)Ae2t and the solution of the second equation is y(t) = Be3t .

5. (a)

⎧⎨⎩
y′ = z

z′ = w

w′ = −x2w + xz − y + x

(b)

{
y′ = z

z′ = (sin x)z − (cos x)y

6. (a) We check that

−5
2Ae−5t + 2Bet = dx

dt
= 3

(
1
2Ae−5t + 2Bet

)
− 4

(
Ae−5t + Bet

)
and

−5Ae−5t + Bet = dy

dt
= 4

(
1
2Ae−5t + 2Bet

)
− 7

(
Ae−5t + Bet

)
,

hence this solution set satisfies the system of differential equations.
(b) We check that

3Ae3t − Be−t = dx

dt
=
(
Ae3t + Be−t

)
+
(

2Ae3t − 2Be−t
)

and

6Ae3t + 2Be−t = dy

dt
= 4

(
Ae3t + Be−t

)
+
(

2Ae3t − 2Be−t
)

,

hence this solution set satisfies the system.

7. (a) We calculate that

0 = det

(
3 − m 2
−2 −1 − m

)
= m2 − 2m + 1,

hence we find the single root m = 1. We then solve the system

2A + 2B = 0

−2A − 2B = 0
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to find that A = 1, B = −1, hence there is the solution set x = et ,
y = −et .

For a second solution, we guess

x = (α + βt)et

y = (γ + δt)et .

Substituting into the system and solving yields α = 1, β = −1,
γ = −1, δ = 1. Thus we find the second solution x = (1 − t)et ,
y = (−1 + t)et .

(b) We calculate that

0 = det

(
1 − m 1
−1 1 − m

)
= m2 − 2m + 2,

hence we find the roots m = 1 ± i. Solving for A and B as usual,
we find the solution sets

x = −ie(1+i)t , y = e(1+i)t

and

x = e(1−i)t , y = −ie(1−i)t .

Taking a suitable linear combination of these two complex-valued
solutions, we find the real solutions

x = et cos t, y = −et sin t

and

x = et sin t, y = et cos t.

8. We calculate that

0 = det

(
0 − m 1

1 0 − m

)
= m2 − 1,

hence we find the roots m = ±1. Solving for A and B as usual gives
the solution sets

x = et , y = et

and

x = e−t , y = −e−t .
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The general solution is

x = Aet + Be−t , y = Aet − Be−t .

The initial conditions yield the equations

1 = A + B

0 = Ae − Be−1.

Solving gives us the particular solution

x = 1

1 + e2
et + e2

1 + e2
e−t ,

1

1 + e2
et − e2

1 + e2
e−t .
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Abel, N. H., 184
mechanical problem, 184
problem of a bead sliding down a wire, 184

addition of series, 100
alternating series test, 95
analogy between electrical current and flow of

water, 44
approximate solution graph, 199
approximation by parabolas, 214
associated

linear algebraic system, 225
polynomial, 49

Bernoulli, D., 143
solution of wave equation, 143

Bessel functions, 93, 179
binary recursion, 113
boundary

conditions, 144
value problem, 144, 162

bounded variation
function as the difference of two monotone

functions, 128
variation, functions of, 128

brachistochrone, 39, 188
Brahe, Tycho, 85

capacitor, 43
catenary, 39
Cauchy, A. L., 144

product, 100
product of conditionally convergent series, 101

product of series, 100
–Schwarz–Bunjakovski inequality, 137

Cesàro means, 127
complex

exponentials, 51
numbers, 53
roots for higher-order equations, 87

condenser, 43
conservation of energy, 151, 185
constants in solutions, 4
convergence of Fourier series, 125
convolution, 180

and the Laplace transform, 180
cosine series expansion, 131
coupled harmonic oscillators, 89

d’Alembert, J. L., 142
solution of vibrating string, 142

damped vibrations, 68
damping is less than force of spring, 70
density of heat, 151
derivative of the Laplace transform, 176
descent time of a sliding bead, 185
differential equation

examples of, 3
in physics, 2
that describes a family of curves, 19
use of to derive power series, 103
what is, 1

Dirichlet, P. L., 125, 156
and convergence of series, 144
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Dirichlet, P. L. (contd.)
conditions, 128
problem for a disc, 156, 159

discontinuity
of the first kind, 125
of the second kind, 125

discrete models, 199
discretization error, 204

local, 205
total, 206

distinct
complex roots for systems, 228
real roots for higher-order equations, 87
real roots for systems, 226

double precision calculations, 205

eigenfunctions, 145, 162
eigenvalues, 145
electrical

circuits, 43, 74
flow analogous to oscillating cart, 74

electromagnetics, 156
electromotive force, 43
elliptic equation, 148
end of solution process, 5
error

estimates, 205
terms, 203

estimate for discretization error, 205
Euler, L., 116

equidimensional equation, 158
formula, 52
method, 201
method, improved, 207
method, rationale for, 201

even
extension of a function, 131
functions, 128

exact equations, 13
method of, 14

exactness and geometry, 17
existence and uniqueness for systems, 221

falling body, 2
described by a system, 233

Fejér, L., 126

filters, 121
first-order

equations, solution with power series, 102
linear equations, 10
method of, 10

forced vibrations, 72
Fourier, J., 144

book, 154
coefficients on an arbitrary interval, 133
derivation of the formula for Fourier

coefficients, 154
series, 115
series, applications of, 115
series, coefficients of, 116
series, convergence of, 124
series, mathematical theory, 144
series on arbitrary intervals, 132
series on [−L, L], 133
series summands, 119
series, uniform convergence of, 127
series vs. power series, 115
solution of the heat equation, 151

foxes and rabbits, 233
friction

exceeds string force, 69
piecewise smooth, 125
what is, 143

Gauss, C., 144
general solution, 5, 31, 32, 50

of a system, 223
geometry of 3-space, 136
Golden Gate Bridge, 74

Halley, Edmund, 85
hanging chain problem, 36
heat distribution on a disc, 158
heat equation, 152

derivation of, 151, 152
Fourier’s point of view, 151
Fourier’s solution of, 153

heat flow
in a disc, 156
in a rod, 156

heat has no sources or sinks, 152
heated rod, 151
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Heun’s method, 208
higher-order

differential equations, 85
linear equations, solution of, 86

higher transcendental functions, 93
homogeneous, 22

equation, 22, 49, 55
of degree α, 23
systems, 219, 221
systems with constant coefficients,

225
hyperbolic partial differential equation,

148

imaginary numbers, 52
improved Euler method, 207, 208
impulse, 193

function, 192
impulsive response, 194
independent solutions, 7
indicial response, 189
inductance, 43
infinite-dimensional spaces, 136
initial conditions, 34
inner product, 137
input equal to a step function, 191
integral

equations and the Laplace transform,
183

of the Laplace transform, 179
integrating factors, 17, 26
interval of convergence, 94

endpoints of, 95
inverse Laplace transform, 173

Kepler, J., 75
and Tycho Brache, 85
First Law, 75
First Law, derivation of, 80
laws, 75
Second Law, 75
Second Law, derivation of, 78
Third Law, 75
Third Law, derivation of, 82

Kirchhoff’s Law, 44
known solution, use of to find another, 62, 63

Lagrange, J. L., 144
interpolation, 144

Laplace, P., 156
Laplace transform, 168

analysis of Bessel’s equation, 177
calculation of, 170
converting a differential equation, 172
definition of, 169
is one-to-one, 173
of the antiderivative, 175
of the derivative, 171
properties of, 180
solving a differential equation, 172

laws of nature, 3
Legendre, A. M., 3

equation, 109
functions, 112
polynomials, 112

length, 137, 138
linear combinations of solutions, 5, 222
linearization, 237
linearly

dependent, 223
independent, 224

Maple, 204
Mathematica, 204
method of linearization, 237
method of reduction of order, 30
method of wishful thinking, 27
monotone increasing, 128

n-body problem, 217
Newton’s Law

of Cooling, 151
of Universal Gravitation, 75

Newtonian model of the universe, 219
noise and hiss, 121
nonlinear systems, 233
nonlinearity, 238
norm, 137, 138
numerical

analysis, 198
approximation of solutions, 198
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numerical (contd.)
method, spirit of, 199
methods, 198

odd
extension of a function, 131
functions, 128

order of an equation, 3
organized guessing, 49, 60
orthogonal

expansions, 151
functions, 136
system, 162
trajectories, 20

orthogonality, 136
of eigenfunctions, 150
properties of eigenfunctions, 163
property, 162
with respect to a weight, 165

orthonormal, 162

parabolic equation, 148
parity relations, 129
particular solution, 34
periodicity, 119
physical principles governing heat, 151
Poisson, S. D., 159

integral, 159, 161
integral formula, 161
kernel, 161

polynomials, 92
population ecology, 217
potential theory, 156
power series, 93

convergence of, 93, 99
convergence to a function, 98
formula for coefficients, 97
solution at an ordinary point, 107, 113
sum of, 94
uniqueness of, 98
vs. Fourier series, 115

products of series, 100
pseudosphere, 41
pursuit curves, 40

radius of convergence, 94
ratio test, 94

real analytic functions, 98
properties of, 102

reduction of order
method of, 30
with dependent variable missing, 30
with independent variable missing, 32

remainder term in Taylor’s formula, 98
repeated real roots

for higher-order equations, 87
for systems, 230

resistance balances force of spring, 69
resistor, 43
resonance, 74
response

of an electrical system, 189
of a mechanical system, 189

root test, 96
round-off error, 204

dangers of, 204
Runge–Kutta method, 210, 212

scalar multiplication of series, 100
second-order equations, power series solution

of, 107
second-order linear equations, 48

with constant coefficients, 48
separable equations, 7

method of, 8
separable, not all equations are, 10
separation of variables, 148, 157
series

operations on, 100
products of, 100
sums of, 100

simple discontinuity, 125
simple harmonic motion, 66

undamped, 66
Simpson’s rule, 210
sine series expansion, 131
smaller step size, 210
solution

as an implicitly defined function, 5
expressed implicitly, 18
has no derivatives, 6
of a differential equation, 4
qualitative properties, 198
set for a system, 221
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special functions, 93
square-integrable functions, 139
steady-state heat distribution, 155
step function, 189
step size too small, 204
Sturm–Liouville

problems, 162
theory, 163

sums
of series, 100
of solutions of Laplace’s equation, 158

superposition, 5
formulas, 195

system as a single vector-valued equation, 223
systems

as vector-valued differential equations, 217
of differential equations, 216
of linear equations, 219

tautochrone, 39, 188
Taylor expansions, 98
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